Atjaunināt sīkdatņu piekrišanu

E-grāmata: Definitive Guide to Machine Learning Operations in AWS: Machine Learning Scalability and Optimization with AWS

  • Formāts: PDF+DRM
  • Izdošanas datums: 03-Jan-2025
  • Izdevniecība: APress
  • Valoda: eng
  • ISBN-13: 9798868810763
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 03-Jan-2025
  • Izdevniecība: APress
  • Valoda: eng
  • ISBN-13: 9798868810763

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Foreword by Dr. Shreyas Subramanian, Principal Data Scientist, Amazon





 





This book focuses on deploying, testing, monitoring, and automating ML systems in production. It covers AWS MLOps tools like Amazon SageMaker, Data Wrangler, and AWS Feature Store, along with best practices for operating ML systems on AWS.





 





This book explains how to design, develop, and deploy ML workloads at scale using AWS cloud's well-architected pillars. It starts with an introduction to AWS services and MLOps tools, setting up the MLOps environment. It covers operational excellence, including CI/CD pipelines and Infrastructure as code. Security in MLOps, data privacy, IAM, and reliability with automated testing are discussed. Performance efficiency and cost optimization, like Right-sizing ML resources, are explored. The book concludes with MLOps best practices, MLOPS for GenAI, emerging trends, and future developments in MLOps





 





By the end, readers will learn operating ML workloads on the AWS cloud. This book suits software developers, ML engineers, DevOps engineers, architects, and team leaders aspiring to be MLOps professionals on AWS.





 





What you will learn:





Create repeatable training workflows to accelerate model development





Catalog ML artifacts centrally for model reproducibility and governance





Integrate ML workflows with CI/CD pipelines for faster time to production





Continuously monitor data and models in production to maintain quality





Optimize model deployment for performance and cost





 





Who this book is for:





This book suits ML engineers, DevOps engineers, software developers, architects, and team leaders aspiring to be MLOps professionals on AWS.





 





 

Chapter 1: Introduction to MLOps.
Chapter 2: Foundations of MLOps on AWS.
Chapter 3: Operational Excellence in MLOps.
Chapter 4: Security in MLOps.
Chapter 5: Reliability in MLOps.
Chapter 6: Performance Efficiency in MLOps.
Chapter 7: Cost Optimization in MLOps.
Chapter 8 MLOps Best Practices and Case Studies.
Chapter 9: MLOPS for GenAI.
Chapter 10: Future Trends in MLOps.

Neel Sendas is a Principal Technical Account Manager at Amazon Web Services (AWS). In this role, he serves as the AWS Cloud Operations lead for some of the largest enterprises that utilize AWS services. Drawing from his expertise in cloud operations, in this book, Neel presents solutions to common challenges related to ML Cloud Governance, Cloud Finance, and Cloud Operational Resilience & Management at scale. Neel also plays a crucial role as part of the core team of Machine Learning Technical Field Community leaders at AWS, where he contributes to shaping the roadmap of AWS Artificial Intelligence and Machine Learning (AI/ML) Services. Neel is based in the state of Georgia, United States.





 





Deepali Rajale is a former AWS ML Specialist Technical Account Manager, with extensive experience supporting enterprise customers in implementing MLOps best practices across various industries. She is also the founder of Karini AI, a company dedicated to democratizing generative AI for businesses. She enjoys blogging about ML and Generative AI and coaching customers to optimize their AI/ML workloads for operational efficiency and cost optimization. In her spare time, she enjoys traveling, seeking new experiences, and keeping up with the latest technology trends.