Atjaunināt sīkdatņu piekrišanu

E-grāmata: Delivery Systems for Tuberculosis Prevention and Treatment

Edited by , Consultant editor , Consultant editor
  • Formāts - EPUB+DRM
  • Cena: 155,79 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Provides a review of novel pharmaceutical approaches for Tuberculosis drugs

  • Presents a novel perspective on tuberculosis prevention and treatment
  • Considers the nature of disease, immunological responses, vaccine and drug delivery, disposition and response
  • Multidisciplinary appeal, with contributions from microbiology, immunology, molecular biology, pharmaceutics, pharmacokinetics, chemical and mechanical engineering
List of Contributors
xvi
Foreword xviii
Series Preface xxi
Preface xxiii
1 Introduction: A Guide to Treatment and Prevention of Tuberculosis Based on Principles of Dosage Form Design and Delivery
1(10)
A.J. Hickey
1.1 Background
1(2)
1.2 Dosage Form Classification
3(2)
1.2.1 Dosage Forms
3(2)
1.3 Controlled and Targeted Delivery
5(1)
1.4 Physiological and Disease Considerations
6(1)
1.5 Therapeutic Considerations
7(1)
1.6 Conclusion
8(3)
References
8(3)
Section 1 Pathogen and Host
11(56)
2 Host Pathogen Biology for Airborne Mycobacterium tuberculosis: Cellular and Molecular Events in the Lung
13(35)
Eusondia Arnett
Nitya Krishnan
Brian D. Robertson
Larry S. Schlesinger
2.1 Introduction
13(1)
2.2 Lung
14(3)
2.2.1 Alveoli
16(1)
2.2.2 The Different Lung Macrophages
17(1)
2.2.3 Other Immune Cells in the Lung
17(1)
2.3 General Aspects of Mucus and Surfactant
17(1)
2.4 General M. tuberculosis
18(1)
2.5 M. tuberculosis Interaction with the Lung Macrophage
19(4)
2.5.1 Initial Interactions Following Inhalation
19(1)
2.5.2 Interactions with the Macrophage
19(4)
2.6 M. tuberculosis Interaction with other Respiratory Immune Cells
23(6)
2.6.1 Neutrophils
23(1)
2.6.2 Dendritic Cells
24(1)
2.6.3 NK Cells
25(1)
2.6.4 B Cells
26(1)
2.6.5 T Cells
27(2)
2.7 TB Granuloma
29(1)
2.8 Conclusion
30(18)
References
30(18)
3 Animal Models of Tuberculosis
48(19)
David N. McMurray
3.1 Introduction
48(1)
3.2 What is an Animal Model of TB?
49(1)
3.3 How are Animal Models of TB Used?
50(1)
3.4 TB Animal Models Currently Used for TB Drug and Vaccine Evaluation
51(7)
3.4.1 Guinea Pig
53(1)
3.4.2 Mouse
54(1)
3.4.3 Non-human Primate
55(1)
3.4.4 Rabbit
56(1)
3.4.5 Zebrafish
57(1)
3.4.6 Rat
57(1)
3.4.7 Domestic Animals and Wildlife Reservoirs
58(1)
3.5 Summary
58(9)
References
59(8)
Section 2 Immunological Intervention
67(44)
4 Vaccine Preparation: Past, Present, and Future
69(22)
Dominique N. Price
Nitesh K. Kunda
Amber A. McBride
Pavan Muttil
4.1 Introduction
69(2)
4.2 Early Efforts in TB Vaccine Development
71(2)
4.2.1 Early BCG Formulation and Manufacturing
71(1)
4.2.2 History of the BCG Vaccine and Routes of Administration
72(1)
4.2.3 Quality Control Issues
72(1)
4.3 Current BCG Vaccine Formulation
73(3)
4.3.1 BCG Vaccine Strain Variability
73(1)
4.3.2 BCG Lyophilization for Stability
73(1)
4.3.3 Manufacturing Process
74(1)
4.3.4 Packing and Storage
75(1)
4.3.5 Transportation
75(1)
4.3.6 Needle-stick Issues
76(1)
4.4 Novel TB Vaccination Strategies
76(8)
4.4.1 Formulation and Stabilization Techniques
78(3)
4.4.2 Manufacturing of TB Vaccines
81(1)
4.4.3 Whole-Cell Vaccine
82(1)
4.4.4 Subunit Vaccines
83(1)
4.4.5 Regulatory Approval Process
83(1)
4.4.6 Vaccine Packaging
84(1)
4.5 Future Perspective
84(1)
4.6 Conclusions
85(6)
References
85(6)
5 TB Vaccine Assessment
91(20)
Andre G. Loxton
Man K. Hondalus
Samantha L. Sampson
5.1 Introduction
91(1)
5.2 Preclinical Vaccine Assessment
92(5)
5.2.1 Murine Model
93(1)
5.2.2 Guinea Pig Model
94(1)
5.2.3 Cattle Model
94(1)
5.2.4 Non-human Primate Model
95(2)
5.3 Clinical Assessment of Vaccines
97(5)
5.3.1 Human Clinical Trials and Phases of Testing
97(1)
5.3.2 Live Attenuated Vaccine Candidates
97(2)
5.3.3 Viral Vectored Subunit Vaccines
99(1)
5.3.4 Adjuvanted Subunit Vaccines
100(1)
5.3.5 Therapeutic Vaccines
101(1)
5.3.6 Route of Immunization
101(1)
5.4 Laboratory Immunological Analysis and Assessment of Vaccine Trials
102(1)
5.4.1 Decision on Population of Interest
102(1)
5.4.2 Detection of Infection
102(1)
5.4.3 Detection of Protective Immunity
102(1)
5.5 How well do the Available Preclinical Models Predict Vaccine Success in Humans?
103(8)
References
105(6)
Section 3 Drug Treatment
111(164)
6 Testing Inhaled Drug Therapies for Treating Tuberculosis
113(18)
Ellen F. Young
Anthony J. Hickey
Miriam Braunstein
6.1 Introduction
113(1)
6.2 The Need for New Drug Treatments for Tuberculosis
114(1)
6.3 Inhaled Drug Therapy for Tuberculosis
114(1)
6.4 Published Studies of Inhalation Therapy for TB
115(1)
6.5 The Guinea Pig Model for Testing Inhaled Therapies for TB
116(1)
6.6 Guinea Pig Study Design
117(1)
6.7 Purchase and Grouping Animals
118(1)
6.8 Infecting Guinea Pigs with Virulent Mycobacterium tuberculosis
118(1)
6.9 Dosing Groups of Guinea Pigs with TB Drugs
119(2)
6.10 Collecting Data
121(1)
6.11 Aerosol Dosing Chambers and Practice
122(1)
6.11.1 Study Timing with Regard to Scale of Manufacturing
122(1)
6.11.2 Animal Model Selection
123(1)
6.11.3 Dose and Dosing Regimen
123(1)
6.12 Nebulizer Aerosol Delivery Systems for Liquids
123(2)
6.13 Dry-Powder Aerosol Delivery Systems for Solids
125(2)
6.14 Summary
127(4)
Acknowledgements
127(1)
References
127(4)
7 Preclinical Pharmacokinetics of Antitubercular Drugs
131(25)
Mariam Ibrahim
Lucila Garcia-Contreras
7.1 Introduction
131(1)
7.2 Factors Influencing the Pharmacokinetic Behavior of Drugs
132(6)
7.2.1 Physicochemical Properties of the Drug
132(5)
7.2.2 Formulation and Routes of Administration
137(1)
7.2.3 Disease State
138(1)
7.3 Pulmonary Delivery of Anti-TB Drugs
138(2)
7.4 Pharmacokinetic Study Design
140(4)
7.4.1 Animal Models
140(1)
7.4.2 Biological Samples
141(1)
7.4.3 Analytical Method
142(1)
7.4.4 Calculation of PK Parameters
142(2)
7.5 Implications of PK Parameters on Efficacy
144(2)
7.5.1 Tissue Samples
144(1)
7.5.2 Pharmacokinetics of Anti-TB Drug in Granulomas
145(1)
7.5.3 PK/PD Correlations
146(1)
7.6 Case Studies (Drugs Administered by Conventional and Pulmonary Routes)
146(10)
7.6.1 Rifampicin
146(5)
7.6.2 Capreomycin
151(1)
References
152(4)
8 Drug Particle Manufacture -- Supercritical Fluid, High-Pressure Homogenization
156(5)
Kimiko Makino
Hiroshi Terada
8.1 Introduction
156(1)
8.2 Preparation of Nano-and Micro-particles
157(4)
8.2.1 Microparticles Prepared by a Supercritical Antisolvent-Drug Excipient Mixing (SAS-DEM) Technique
157(1)
8.2.2 Nanoparticles Prepared by a Supercritical Fluid (SCF) Technique
157(1)
8.2.3 Nanosuspension
158(1)
8.2.4 Liposomes
159(1)
References
159(2)
9 Spray Drying Strategies to Stop Tuberculosis
161(36)
Jennifer Wong
Maurizio Ricci
Hak-Kim Chan
9.1 Introduction
161(1)
9.2 Overview of Spray Drying
162(12)
9.2.1 Advantages of Spray Drying
163(1)
9.2.2 Hardware
163(5)
9.2.3 Spray Dryer Classifications
168(2)
9.2.4 Process Parameters
170(2)
9.2.5 Particle Formation Mechanism
172(2)
9.3 Advances in Spray Drying Technology
174(5)
9.3.1 The `Quality by Design' Approach
174(1)
9.3.2 The Nano Spray Dryer B-90
175(2)
9.3.3 Novel Multi-Channel Nozzles
177(2)
9.4 Anti-Tuberculosis Therapeutics Produced by Spray Drying
179(8)
9.4.1 Controlled-Release Microparticles
179(5)
9.4.2 Maximal Drug-loaded Microparticles
184(2)
9.4.3 Vaccines
186(1)
9.5 Conclusion
187(1)
9.6 Acknowledgements
187(10)
References
187(10)
10 Formulation Strategies for Antitubercular Drugs by Inhalation
197(16)
Francesco Buttini
Gala Colombo
10.1 Introduction
197(1)
10.2 Lung Delivery of TB Drugs
198(2)
10.3 Powders for Inhalation and Liquids for Nebulization
200(2)
10.4 Antibacterial Powders for Inhalation: Manufacturing of Respirable Microparticles
202(6)
10.5 Antibacterial Powders for Inhalation: Devices and Delivery Strategies
208(3)
10.6 Conclusions and Perspectives
211(2)
References
211(2)
11 Inhaled Drug Combinations
Sanketkumar Pandya
Anuradha Gupta
Rajeev Ranjan
Madhur Sachan
Atul Kumar Agrawal
Amit Misra
11.1 Introduction
213(1)
11.2 Standard Combinations in Oral and Parenteral Regimens
214(2)
11.2.1 Combinations for the Directly Observed Treatment Short-Course (DOTS) Regimen
214(2)
11.3 The Rationale for Inhaled Therapies of TB
216(6)
11.3.1 Single Drug, Supplementing Other Orally Administered Drugs
218(1)
11.3.2 Single Drug Replacing Injectable First- or Second-Line Agents
219(1)
11.3.3 Multiple Inhaled Drugs, Adjunct or Stand-alone Therapy
220(1)
11.3.4 "Stimulate the Phagocyte"
220(2)
11.4 Combinations of Anti-TB Drugs with Other Agents
222(2)
11.4.1 Drugs that Primarily Affect the Pathogen
222(1)
11.4.2 Drugs that Affect Host Responses
223(1)
11.4.3 Drugs that Affect both Host and Pathogen
224(1)
11.5 Formulation of Inhaled Drug Combinations
224(6)
11.5.1 Excipient-free Formulations
224(1)
11.5.2 Applications of Excipients
225(2)
11.5.3 Preparing Multi-Component Particles and Vesicles
227(1)
11.5.4 Shelf Stability
227(1)
11.5.5 Drug Release and Pharmacokinetics
228(1)
11.5.6 Inhalation Dosimetry
229(1)
11.6 Conclusions
230(9)
References
230(9)
12 Ion Pairing for Controlling Drug Delivery
239(19)
Stefano Giovagnoli
Aurelie Schoubben
Carlo Rossi
12.1 Introduction
239(1)
12.2 Ion Pairing Definitions and Concepts
240(5)
12.2.1 Ion Pairing as Physicochemical Tuning Tool
241(1)
12.2.2 Metal Ion Complexation
242(2)
12.2.3 Some Considerations on Ion Pair and Metal Complex Stability
244(1)
12.3 Ion Pairs, Complexes and Drug Delivery
245(7)
12.3.1 Oral Route
245(1)
12.3.2 Transdermal/Dermal and Mucosal Route
246(1)
12.3.3 Parenteral Route
247(1)
12.3.4 The Pulmonary Route and Infectious Diseases
247(1)
12.3.5 Toxicity Considerations
248(4)
12.4 Remarks
252(6)
References
254(4)
13 Understanding the Respiratory Delivery of High Dose Anti-Tubercular Drugs
258(17)
Shyamal C. Das
Peter J. Stewart
13.1 Introduction
258(1)
13.2 Tuberculosis
259(1)
13.3 Drugs Used to Treat Tuberculosis, Doses, Challenges and Requirements for Therapy in Lungs
260(2)
13.3.1 Current TB Treatment Regimen
260(1)
13.3.2 Challenges of Conventional Oral and Parenteral Therapy
261(1)
13.3.3 Rationale for Respiratory Delivery
261(1)
13.4 Approaches for Respiratory Delivery of Drugs
262(1)
13.5 Current DPI Formulations and Their Mechanisms of Aerosolization
262(2)
13.6 DPI Formulations for Tuberculosis and Requirements
264(1)
13.7 Issues to Consider in Respiratory Delivery of Powders for Tuberculosis
264(2)
13.8 Relationship between De-agglomeration and Tensile Strength
266(2)
13.9 Strategies to Improve De-agglomeration
268(1)
13.10 DPI Formulations having High Aerosolization
269(1)
13.11 Devices for High Dose Delivery
270(1)
13.12 Future Considerations
271(4)
References
272(3)
Section 4 Alternative Approaches
275(50)
14 Respirable Bacteriophage Aerosols for the Prevention and Treatment of Tuberculosis
277(16)
Graham F Hatfull
Reinhard Vehring
14.1 Introduction
277(5)
14.1.1 Bacteriophages
277(3)
14.1.2 Mycobacteriophages
280(2)
14.1.3 Mycobacterium tuberculosis as a Host for Phage Infection in vivo
282(1)
14.1.4 Mycobacteriophages and TB Diagnosis
282(1)
14.2 Treatment or Prevention of Tuberculosis Using Phage-based-Agents
282(2)
14.2.1 Bacteriophages as Therapeutic Agents
282(1)
14.2.2 Prospects for Using Mycobacteriophages for Therapy or TB Prevention
283(1)
14.3 Selection of Mycobacteriophages
284(1)
14.4 Respiratory Drug Delivery of Phages
285(3)
14.5 Summary and Outlook
288(5)
Acknowledgements
288(1)
References
288(5)
15 RNA Nanoparticles as Potential vaccines
293(14)
Robert DeLong
15.1 Introduction
293(1)
15.2 Nanoparticles
293(1)
15.3 RNA Nanoparticle Vaccines
294(1)
15.4 Progression of Nanomedicines into the Clinic
295(1)
15.5 The Stability Problem
295(3)
15.6 The Delivery Problem
298(1)
15.7 RNA as Targeting Agent or Adjuvant?
298(2)
15.8 Challenges for RNA Nanoparticle Vaccine Characterization
300(1)
15.9 On the Horizon
301(6)
References
301(6)
16 Local Pulmonary Host-Directed Therapies for Tuberculosis via Aerosol Delivery
307(18)
Mercedes Gonzalez-Juarrero
16.1 Introduction
307(2)
16.1.1 Tuberculosis Disease and Control
308(1)
16.1.2 Chemotherapy and Host Immunity to Tuberculosis
308(1)
16.1.3 Aerosol Delivery of Host-Directed Therapies for Tuberculosis Treatment
309(1)
16.2 Lung Immunity to Pulmonary M. tuberculosis Infection
309(4)
16.2.1 Overview
309(1)
16.2.2 Influence of Lung Alveoli Environment on Bacilli Survival and its Impact on Tuberculosis Chemotherapy
310(1)
16.2.3 Potential Targets for Host-Directed Therapy
311(2)
16.3 Host-Directed Therapies
313(4)
16.3.1 Previous Studies via Systemic Administration of Host-Directed Therapies
313(2)
16.3.2 Previous Studies via Aerosol Delivery of Host-Directed Therapies
315(2)
16.4 Limitations of Preclinical Studies to Develop Inhalational Host-Directed Therapies for Tuberculosis
317(1)
16.5 Preclinical Testing of Inhaled Small Interference RNA as Host-Directed Therapies for Tuberculosis
318(7)
Acknowledgements
319(1)
References
319(6)
Section 5 Future Opportunities
325(54)
17 Treatments for Mycobacterial Persistence and Biofilm Growth
327(19)
David L. Hava
Jean C. Sung
17.1 Introduction
327(1)
17.2 Mycobacterial Persistence and Drug Tolerance
328(1)
17.3 Mycobacterial Multicellular Growth
329(1)
17.4 Mycobacterial Lipids Involved in Biofilm Formation
330(2)
17.5 Therapies to Treat Mycobacterial Biofilms and Persistence
332(7)
17.5.1 Therapies to Treat Mycobacterial Biofilms
332(2)
17.5.2 Therapies to Disrupt Nutrient Acquisition and Persistence
334(1)
17.5.3 Treatments for Biofilm Dispersion
335(1)
17.5.4 Treatments Derived from Host Innate Defenses
336(1)
17.5.5 Treatments with Inhaled Antibiotics
337(2)
17.6 Conclusion
339(7)
References
339(7)
18 Directed Intervention and Immunomodulation against Pulmonary Tuberculosis
346(33)
Dominique N. Price
Pavan Muttil
18.1 Introduction
346(1)
18.2 TB Immunology
347(4)
18.2.1 Early Events of Infection
347(1)
18.2.2 Delayed Adaptive Immunity
348(1)
18.2.3 Humoral Immunity and Innate Lymphocytes
348(1)
18.2.4 Latent Infection
349(1)
18.2.5 Correlates of Protection and Tolerance
350(1)
18.2.6 Natural Immunity against TB Infection
351(1)
18.3 Animal Models of Immunotherapies and Vaccines for TB
351(2)
18.3.1 Mouse Model
352(1)
18.3.2 Guinea Pig Model
352(1)
18.3.3 Non-human Primates Model
352(1)
18.4 The Current TB Vaccine -- Bacille Calmette Guerin
353(4)
18.4.1 BCG Vaccine History
353(1)
18.4.2 Alternative Routes of BCG Delivery
353(1)
18.4.3 Failures of BCG
354(3)
18.5 Other Vaccines Platforms
357(4)
18.5.1 Live Bacterial Vaccines
357(1)
18.5.2 Inactivated Whole-cell Vaccines
358(1)
18.5.3 Viral Vector-based TB Vaccines
359(1)
18.5.4 Heterologous Prime-boost Vaccination Strategy in TB
360(1)
18.6 Pulmonary Immunization
361(3)
18.6.1 Biomimicry: Harnessing Natural Immunity for Protection against TB
361(1)
18.6.2 Pulmonary Immunization for Global Protection
361(2)
18.6.3 Safety Concerns for Pulmonary Immunization
363(1)
18.6.4 Role of Adjuvants
363(1)
18.6.5 Live vs Dead Vaccines
364(1)
18.7 Immunotherapeutic Agents against TB
364(3)
18.7.1 Cytokines
365(1)
18.7.2 Vitamin D Therapy
366(1)
18.7.3 Re-purposed Drugs
366(1)
18.7.4 Stem Cell Therapy
366(1)
18.8 Conclusion
367(12)
References
367(12)
Section 6 Clinical Perspective
379(36)
19 Clinical and Public Health Perspectives
381(19)
Ruvandhi R. Nathavitharana
Edward A. Nardell
19.1 Introduction
381(1)
19.2 Background
382(1)
19.3 Clinical Considerations
382(3)
19.3.1 Pill Burden and Fixed-dose Combinations
382(1)
19.3.2 Non-adherence and Medication Monitoring
383(1)
19.3.3 Intermittent Therapy
383(1)
19.3.4 Drug Toxicity
384(1)
19.3.5 Drug Absorption and Therapeutic Drug Monitoring
384(1)
19.4 Public Health Considerations
385(2)
19.4.1 DOTS
385(1)
19.4.2 Community-based Therapy
386(1)
19.4.3 Incentives and Enablers to Promote Adherence
386(1)
19.5 Inhaled Drugs and Other Alternative Delivery Systems
387(1)
19.5.1 Possible Advantages
387(1)
19.5.2 Concerns and Limitations
388(1)
19.5.3 Acceptance of Novel Therapies
388(1)
19.6 Clinical Trials of Inhaled Injectable Drugs
388(5)
19.6.1 Capreomycin Phase 1 Clinical Study
390(1)
19.6.2 Inhaled Therapy to Reduce Transmission, especially of Highly Drug resistant Strains -- a Trial of Inhaled Colistin (or Polymxyin E)
391(2)
19.7 Other Novel Delivery Strategies
393(1)
19.8 Pediatric Delivery Systems
393(1)
19.9 Conclusion
394(6)
References
394(6)
20 Concluding Remarks: Prospects and Challenges for Advancing New Drug and Vaccine Delivery Systems into Clinical Application
400(15)
P. Bernard Fourie
Richard Hafner
20.1 Introduction
400(1)
20.2 Progress in the Formulation and Manufacturing of Drugs and Vaccines for Tuberculosis
401(3)
20.2.1 Inhaled Drugs and Drug Combinations
401(3)
20.3 Considerations in the Development of TB Drug and Vaccine Delivery Options
404(6)
20.3.1 Lung Biology and Pulmonary Administration of Drugs and Vaccines
404(1)
20.3.2 Choice of Animal Model in the Evaluation of Drug and Vaccine Delivery Systems
405(1)
20.3.3 Demonstrating Bioequivalence and Clinical Efficacy of Inhaled Drugs to Oral/Parenteral Dosage Forms
406(2)
20.3.4 Inhaled Vaccines for TB -- are there Potential Advantages?
408(1)
20.3.5 Safety of Pulmonary Vaccination
409(1)
20.4 Concluding Remarks
410(5)
References
411(4)
Index 415
Anthony J. Hickey, Distinguished Fellow (appointed June 2012), is a Program Director in Inhaled Therapeutics in the Center for Aerosol and Nanomaterials Engineering at the Research Triangle Institute, North Carolina, USA. Dr Hickey has more than 30 years of academic and research experience in pulmonary biology, aerosol physics, powder dynamics, pharmacokinetics and drug disposition, formulation design, and device development. Since joining RTI in 2011, he has conducted research related to pulmonary drug and vaccine delivery for tuberculosis treatment and therapy. Additionally, Dr. Hickey is an adjunct professor of biomedical engineering at the University of North Carolina at Chapel Hill School of Medicine, emeritus professor of molecular pharmaceutics at the University of North Carolina at Chapel Hill Eshelman School of Pharmacy, and founder and president of Cirrus Pharmaceuticals, Inc.