Atjaunināt sīkdatņu piekrišanu

E-grāmata: Delta Lake: Up and Running: Modern Data Lakehouse Architectures with Delta Lake

3.89/5 (18 ratings by Goodreads)
  • Formāts: 266 pages
  • Izdošanas datums: 16-Oct-2023
  • Izdevniecība: O'Reilly Media
  • Valoda: eng
  • ISBN-13: 9781098139681
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 46,20 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 266 pages
  • Izdošanas datums: 16-Oct-2023
  • Izdevniecība: O'Reilly Media
  • Valoda: eng
  • ISBN-13: 9781098139681
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

With the rapid growth of big data and AI, organizations are quickly building data products and solutions in an ad-hoc manner. But as these data organizations mature, it's apparent that their analysis and machine learning models are only as reliable as the data they're built upon. The solution? Delta Lake, an open-source format that enables building a lakehouse architecture on top of existing storage systems such as S3, ADLS, and GCS.

In this practical book, author Bennie Haelen shows data engineers, data scientists, and data analysts how to get Delta Lake and its unique features up and running. The ultimate goal of building data pipelines and applications is to query processed data and gain insights from it. You'll learn how the choice of storage solution determines the robustness and performance of the data pipeline, from raw data to insights.

With this book, you will:

  • Use modern data management and data engineering techniques
  • Understand how ACID transactions bring reliability to data lakes at scale
  • Run streaming and batch jobs against your data lake concurrently
  • Execute update, delete, and merge commands against your data lake
  • Use time travel to roll back and examine previous versions of your data
  • Build a streaming data quality pipeline following the medallion architecture



With the surge in big data and AI, organizations can rapidly create data products. However, the effectiveness of their analytics and machine learning models depends on the data's quality. Delta Lake's open source format offers a robust lakehouse framework over platforms like Amazon S3, ADLS, and GCS.

This practical book shows data engineers, data scientists, and data analysts how to get Delta Lake and its features up and running. The ultimate goal of building data pipelines and applications is to gain insights from data. You'll understand how your storage solution choice determines the robustness and performance of the data pipeline, from raw data to insights.

You'll learn how to:

  • Use modern data management and data engineering techniques
  • Understand how ACID transactions bring reliability to data lakes at scale
  • Run streaming and batch jobs against your data lake concurrently
  • Execute update, delete, and merge commands against your data lake
  • Use time travel to roll back and examine previous data versions
  • Build a streaming data quality pipeline following the medallion architecture

Bennie is a principal architect with Insight Digital Innovation-a Microsoft and Databricks partner. As Principal architect with Insight, Bennie's primary focus areas are Modern Data Warehousing, Machine learning, AI, and IoT on various commercial cloud platforms. Bennie has overseen many Data + AI projects in different application domains such as health care, the public sector, oil & gas, and financial applications. Bennie has architected and delivered real time streaming Data Lakehouse applications with Databricks, Spark Structured Streaming, Delta Lake, and Microsoft Power BI for various application domains. Bennie brings a wealth of practical experience in implementing secure, enterprise-scale Data Lakehouse-based solutions to support business intelligence, data science and machine learning. Bennie has also been a frequent speaker at Databricks events at Microsoft Technology Centers around the country, and was a speaker at the Data+AI 2021 summit. Dan Davis is a Cloud Data Architect with a decade of experience delivering analytic insights and business value from data. Using modern tools and technologies, Dan specializes in designing and delivering data platforms, frameworks, and process' to support data integration and analytics for on-premises, hybrid, and cloud environments on an enterprise scale.