Atjaunināt sīkdatņu piekrišanu

E-grāmata: Delta N Formalism In Cosmological Perturbation Theory

(Inst For Research In Fundamental Sciences (Ipm), Iran), (Tohoku Univ, Japan), (Sharif Univ Of Technology, Iran), (Kyoto Univ, Japan)
  • Formāts: 184 pages
  • Izdošanas datums: 30-Jan-2019
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813238770
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 56,35 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 184 pages
  • Izdošanas datums: 30-Jan-2019
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813238770
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Early Universe cosmology is an active area of research and cosmic inflation is a pillar of modern cosmology. Among predictions of inflation, observationally the most important one is the generation of cosmological perturbations from quantum vacuum fluctuations that source all inhomogeneous structures in the Universe, not to mention the large-scale structures such as clusters of galaxies. Cosmological perturbation theory is the basic tool to study the perturbations generated from inflation. There are a few different approaches to primordial cosmological perturbations. In the conventional approach one perturbs the field equations and after quantizing the perturbations by the use of the corresponding action, one calculates the power spectrum of cosmological observables. This approach extends to higher order perturbations such as bispectrum etc., but the analysis becomes increasingly difficult. The delta N formalism, the topic of this book, is an alternative approach. The novelty of this approach is that, under the condition that the scale of interest is very large so that the spatial derivatives may be ignored in the dynamics, it can be applied to all orders in perturbation theory and has a rigorous foundation in general relativity. Thanks to the fact that one can evaluate perturbations with only the knowledge of background solutions, it is proved to be much easier than the conventional approach in evaluating higher order effects in many cases.

Chapter 1 Introduction
1(8)
Chapter 2 Basic formulation of SN formalism
9(58)
2.1 Preliminary
9(11)
2.1.1 Linear perturbation theory
9(6)
2.1.2 Single field slow-roll inflation
15(5)
2.2 SN formalism in linear perturbation theory
20(20)
2.2.1 SN formalism in slow-roll inflation
20(9)
2.2.2 SN formalism in multi-field inflation beyond slow-roll
29(11)
2.3 Non-linear SN formalism
40(12)
2.3.1 The Einstein equations
40(2)
2.3.2 Gradient expansion
42(3)
2.3.3 Leading order in gradient expansion
45(3)
2.3.4 Curvature perturbation and non-linear SN formula
48(4)
2.4 Statistical quantities
52(15)
2.4.1 Power spectrum in cosmological perturbation theory
52(3)
2.4.2 Power spectrum and spectral index in SN formalism
55(3)
2.4.3 Non-Gaussianities
58(4)
2.4.4 Implementation of SN formalism for non-Gaussianity
62(5)
Chapter 3 Application of SN formalism: Warm-up studies
67(12)
3.1 A specific model: Chaotic inflation
67(2)
3.2 Curvaton model
69(10)
3.2.1 Curvature perturbation in curvaton scenario
72(2)
3.2.2 Spectrum and bispectrum in curvaton scenario
74(5)
Chapter 4 Application of SN formalism: Multi-brid inflation
79(16)
4.1 The exact soluble class
79(5)
4.2 Multi-brid inflation
84(6)
4.3 The power spectrum and the bispectrum in multi-brid scenario
90(5)
Chapter 5 Application of SN formalism: Non-attractor inflation
95(20)
5.1 Motivation for non-attractor inflation
95(2)
5.2 Non-attractor background
97(6)
5.3 Power spectrum for non-attractor background
103(4)
5.4 SN Formalism in non-attractor backgrounds
107(8)
5.4.1 The case with cs = 1
108(7)
Chapter 6 Application of SN formalism: Inflation with local features
115(24)
6.1 Motivation
115(2)
6.2 The model
117(11)
6.2.1 Dynamics of inflaton
119(3)
6.2.2 Dynamics of waterfall field
122(6)
6.3 SN formalism in models with localized feature
128(4)
6.4 Power spectrum with localized feature
132(22)
6.4.1 Contribution of inflaton to power spectrum
133(1)
6.4.2 Contribution of the waterfall field to power spectrum
133(1)
6.4.3 Total curvature perturbation power spectrum
134(20)
Appendix A δN for general cs in non-attractor background 139(6)
Appendix B Variance of δΧ fluctuations 145(4)
Appendix C Correlation functions of δΧ2 149(4)
Appendix D Bispectrum with localized feature 153(12)
D.1 Dynamically generated non-Gaussianities
154(5)
D.2 Bispectrum from intrinsic non-Gaussianity
159(1)
D.3 Total fNL parameter
160(5)
Appendix E δN up to ΔΧ4 165(2)
Bibliography 167