Atjaunināt sīkdatņu piekrišanu

E-grāmata: Demystifying AI for the Enterprise: A Playbook for Business Value and Digital Transformation

  • Formāts: 434 pages
  • Izdošanas datums: 30-Dec-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781351032926
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 434 pages
  • Izdošanas datums: 30-Dec-2021
  • Izdevniecība: CRC Press
  • ISBN-13: 9781351032926
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Artificial intelligence (AI) in its various forms machine learning, chatbots, robots, agents, etc. is increasingly being seen as a core component of enterprise business workflow and information management systems. The current promise and hype around AI are being driven by software vendors, academic research projects, and startups. However, we posit that the greatest promise and potential for AI lies in the enterprise with its applications touching all organizational facets.

With increasing business process and workflow maturity, coupled with recent trends in cloud computing, datafication, IoT, cybersecurity, and advanced analytics, there is an understanding that the challenges of tomorrow cannot be solely addressed by todays people, processes, and products.

There is still considerable mystery, hype, and fear about AI in todays world. A considerable amount of current discourse focuses on a dystopian future that could adversely affect humanity. Such opinions, with understandable fear of the unknown, dont consider the history of human innovation, the current state of business and technology, or the primarily augmentative nature of tomorrows AI.

This book demystifies AI for the enterprise. It takes readers from the basics (definitions, state-of-the-art, etc.) to a multi-industry journey, and concludes with expert advice on everything an organization must do to succeed. Along the way, we debunk myths, provide practical pointers, and include best practices with applicable vignettes.

AI brings to enterprise the capabilities that promise new ways by which professionals can address both mundane and interesting challenges more efficiently, effectively, and collaboratively (with humans). The opportunity for tomorrows enterprise is to augment existing teams and resources with the power of AI in order to gain competitive advantage, discover new business models, establish or optimize new revenues, and achieve better customer and user satisfaction.
Chapter 1: AI Strategy for the Executive

Chapter 2: Learning Algorithms, Machine/Deep Learning, and Applied AI A
Conceptual Framework

Chapter 3: AI for Supply Chain Management

Chapter 4: HR and Talent Management

Chapter 5: Customer Experience Management

Chapter 6: Financial Services

Chapter 7: Artificial Intelligence in Retail

Chapter 8: Visualization

Chapter 9: Solution Architectures

Chapter 10: AI and Corporate Social Responsibility

Chapter 11: Future of Enterprise AI

Appendix:






Banking Case Study #1: Get More Value from Your Banking Data How to Turn
Your Analytics Team into a Profit Centre



Banking Case Study #2: AI in Financial Services WeBank Practices



Retail Case Study: 7-Eleven and Cashierless Stores



Supply Chain Case Study: How Orchestrated Intelligence is Utilising
Artificial Intelligence to model a Transformation in Supply Chain Performance




FMCG Case Study: Paper Quality at Georgia-Pacific
Healthcare Case Study: GE Healthcare: 1st FDA Clearance for an AI-enabled
X-ray Devices
Prashant Natarajan, Bob Rogers, Edward Dixon, Jonas Christensen, Kirk Borne, Leland Wilkinson, Shantha Mohan