Atjaunināt sīkdatņu piekrišanu

E-grāmata: Derived Langlands: Monomial Resolutions Of Admissible Representations

(Univ Of Sheffield, Uk)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 101,44 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The Langlands Programme is one of the most important areas in modern pure mathematics. The importance of this volume lies in its potential to recast many aspects of the programme in an entirely new context. For example, the morphisms in the monomial category of a locally p-adic Lie group have a distributional description, due to Bruhat in his thesis. Admissible representations in the programme are often treated via convolution algebras of distributions and representations of Hecke algebras. The monomial embedding, introduced in this book, elegantly fits together these two uses of distribution theory. The author follows up this application by giving the monomial category treatment of the Bernstein Centre, classified by Deligne-Bernstein-Zelevinsky.This book gives a new categorical setting in which to approach well-known topics. Therefore, the context used to explain examples is often the more generally accessible case of representations of finite general linear groups. For example, Galois base-change and epsilon factors for locally p-adic Lie groups are illustrated by the analogous Shintani descent and Kondo-Gauss sums, respectively. General linear groups of local fields are emphasized. However, since the philosophy of this book is essentially that of homotopy theory and algebraic topology, it includes a short appendix showing how the buildings of Bruhat-Tits, sufficient for the general linear group, may be generalised to the tom Dieck spaces (now known as the Baum-Connes spaces) when G is a locally p-adic Lie group.The purpose of this monograph is to describe a functorial embedding of the category of admissible k-representations of a locally profinite topological group G into the derived category of the additive category of the admissible k-monomial module category. Experts in the Langlands Programme may be interested to learn that when G is a locally p-adic Lie group, the monomial category is closely related to the category of topological modules over a sort of enlarged Hecke algebra with generators corresponding to characters on compact open modulo the centre subgroups of G. Having set up this functorial embedding, how the ingredients of the celebrated Langlands Programme adapt to the context of the derived monomial module category is examined. These include automorphic representations, epsilon factors and L-functions, modular forms, Weil-Deligne representations, Galois base change and Hecke operators.
Preface ix
Chapter 1 Finite modulo the centre groups
1(30)
1 Notation
2(6)
2 Monomial resolutions
8(1)
3 Some functor categories
9(6)
4 From functors to modules
15(2)
5 The bar-monomial resolution
17(7)
6 Finiteness of monomial resolutions in characteristic zero
24(7)
Chapter 2 GL2 of a local field
31(50)
1 Induction
32(4)
2 From finite to compact open
36(3)
3 The admissible monomial double-complex
39(2)
4 Monomial resolutions for GL2K
41(16)
5 Monomial resolution and πk-adic levels
57(2)
6 Galois invariant admissibles for GL2K
59(6)
7 A descent construction - a folly in the monomial landscape
65(7)
8 A curiosity - or dihedral voodoo
72(9)
Chapter 3 Automorphic representations
81(26)
1 Automorphic representations of GL2Aq
81(10)
2 Tensor products of monomial resolutions
91(4)
3 Maass forms and their adelic lifts
95(4)
4 GLnk and spaces of modular forms
99(8)
Chapter 4 GLnK in general
107(34)
1 BN-pairs
108(6)
2 Buildings and BN-pairs
114(23)
3 Verification of
Chapter Two, Conjecture 3.3
137(4)
Chapter 5 Monomial resolutions and Deligne representations
141(8)
1 Weil groups and representations
141(6)
2 The bar-monomial resolution of a Deligne representation
147(2)
Chapter 6 Kondo style invariants
149(36)
1 Kondo style epsilon factors
150(14)
2 Tate's thesis in the compact modulo the centre case
164(18)
3 Monomial resolutions and local function equations
182(3)
Chapter 7 Hecke operators and monomial resolutions
185(6)
1 Hecke operators for an admissible representation
185(6)
Chapter 8 Could Galois descent be functorial?
191(26)
1 Morphisms and Shintani descent
191(10)
2 Galois base change of automorphic representations
201(2)
3 Integrality and the proof of Shintani's theorem
203(8)
4 Some recreational integer polynomials
211(1)
5 Base change functoriality for stable homotopy theorists
212(1)
6 Inverse Shintani bijection and monomial resolutions
213(4)
Chapter 9 PSH-algebras and the Shintani correspondence
217(26)
1 PSH-algebras over the integers
217(1)
2 The Decomposition Theorem
218(1)
3 The PSH algebra of {GLmFq, m ≤ 0}
219(7)
4 Semi-direct products Gal(Fqn/F9) α GLtEqn
226(2)
5 R and R
228(2)
6 Shintani base change
230(4)
7 Counting cuspidals irreducibles of GLnFq
234(3)
8 An example of w(k*,*)Pα,m-αw(k*,*) && Pa, m-a
237(6)
Appendix I Galois descent of representations
243(38)
1 Subgroups and elements of A5 via PGL2F4
243(4)
2 Complex irreducible representations of A5
247(2)
3 Semi-direct products
249(3)
4 The Shintani correspondence for GLnFqd
252(1)
5 Explicit Brauer Induction ac
253(2)
6 Explicit Brauer Induction data for C2 αc PGL2F4
255(3)
7 The weak descent algorithm
258(3)
8 The strong descent algorithm
261(1)
9 The role of the integers dimc(V(H,Φ) in Shintani descent
261(6)
10 The observation of Digne-Michel [ 53]
267(9)
11 Tables of (-)((H,λ)) data
276(5)
Appendix II Remarks on a paper of Guy Henniart
281(22)
1 The basic ingredients
281(12)
2 The formula of ([ 72] p. 123 (5)) for the biquadratic extension
293(4)
3 p-adic epsilon factors modulo p-primary roots of unity
297(6)
Appendix III Finite general linear and symmetric groups
303(26)
1 Symmetric groups
303(6)
2 Irreducibles for GLnFq and their zeta functions
309(6)
3 Kondo-Gauss sums for GLnFq
315(8)
4 The symmetric group's PSH algebra and Theorem 1.8
323(6)
Appendix IV Locally p-adic Lie groups
329(2)
1 Monomial resolutions for arbitrary locally p-adic Lie groups
329(2)
Bibliography 331(6)
Index 337