Atjaunināt sīkdatņu piekrišanu

E-grāmata: Design And Construction Of Berm Breakwaters

(Icebreak Consulting Engineers Ehf, Iceland), (Unesco-ihe & Van Der Meer Consulting Bv, The Netherlands)
  • Formāts: 352 pages
  • Sērija : Advanced Series On Ocean Engineering 40
  • Izdošanas datums: 09-Sep-2016
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814749626
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 103,69 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 352 pages
  • Sērija : Advanced Series On Ocean Engineering 40
  • Izdošanas datums: 09-Sep-2016
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814749626
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Van der Meer contributes his scientific experience and Sigurdarson his practical experience in berm breakwaters to present a guide for the practical designer. The scientific background and validation might also interest hydraulic modelers and researchers. They focus on what is called the Icelandic-type berm breakwaters, which are more stable structures because they use more rock classes and involve less reshaping than the designs that were developed during the 1980s. They cover the history of modern berm breakwaters; the classification and types of berm breakwaters; predicting stability and reshaping; functional behavior: wave overtopping, reflections, and transmissions; the geometrical design of the cross-section; armourstone and quarrying; construction; geometrical design into practice; and constructed examples. Annotation ©2016 Ringgold, Inc., Portland, OR (protoview.com)

Modern design of berm breakwaters began about thirty years ago. However, to date, there has been a lack of a well-established, formal design methodology on berm breakwaters. The authors Dr Jentsje van der Meer and Sigurdur Sigurdarson combine over 40 years of collective experience working with breakwaters to put forwarded a design framework in Design and Construction of Berm Breakwaters; covering the science and design practices of berm breakwater structures. The original design consisted of mass armoured berms that reshaped into statically stable S-shaped slopes. The design was adopted in Iceland and eventually led to a development with more stable structures by using available rock sizes, large rock, and more rock gradings than just "small rock (core)" and "large rock (berm)". This more stable and only partly reshaping structure is called the Icelandic-type berm breakwater.Written for researchers and practitioners, the volume consists of chapters on geometrical designs of the berm breakwater cross-section, including berm reshaping and wave overtopping, quarry and project management, as well as blasting and sorting techniques, designs for various wave conditions and available rock classes, and case studies of already constructed berm breakwaters.
Preface v
Acknowledgment ix
Notation xv
1 History of Modern Berm Breakwaters
1(14)
1.1 Time before modern berm breakwaters
1(1)
1.2 Developments in Australia, mass-armoured breakwater
2(1)
1.3 Developments in Canada, modern berm breakwaters
3(2)
1.4 Contact between Canada and the Netherlands
5(1)
1.5 Developments in Iceland
6(6)
1.6 Berm breakwaters in international cooperation
12(1)
1.7 Outline of the book
13(2)
2 Classification and Types of Berm Breakwaters
15(14)
2.1 Design wave climate, definitions and parameters
15(6)
2.2 Classification of berm breakwaters by PIANC
21(1)
2.3 New classification of berm breakwaters
22(7)
3 Predicting Stability and Reshaping
29(50)
3.1 Practical aspects
29(1)
3.2 Existing prediction methods on static stability
30(5)
3.3 The modified Van der Meer formulae in the Rock Manual
35(1)
3.4 Existing prediction methods on reshaping
36(7)
3.5 Damage profile for a statically stable straight slope
43(3)
3.6 Validation of damage prediction
46(6)
3.7 New method for recession of berm breakwaters
52(27)
3.7.1 Available data sets
52(8)
3.7.2 Development of new recession formula
60(6)
3.7.3 Influences on recession of berm breakwaters
66(10)
3.7.4 Conclusions on recession of berm breakwaters
76(3)
4 Functional Behaviour: Wave Overtopping, Reflection and Transmission
79(32)
4.1 Wave overtopping
79(23)
4.1.1 Context of wave overtopping
79(10)
4.1.2 Available data sets
89(3)
4.1.3 Development of influence factor γBB
92(10)
4.2 Wave reflection
102(5)
4.3 Wave transmission
107(4)
5 Geometrical Design of the Cross-section
111(36)
5.1 About design guidance in this chapter
111(1)
5.2 Parameters in geometrical design of the cross-section
112(19)
5.2.1 General description of the cross-section
112(3)
5.2.2 Berm width, B, as function of recession and resiliency
115(2)
5.2.3 Crest level, Rc
117(3)
5.2.4 Horizontal armour width, Ah
120(1)
5.2.5 Rock classes and proposal for new mass-armoured berm breakwater
121(5)
5.2.6 Berm level, db
126(2)
5.2.7 Apron
128(1)
5.2.8 Transition from Class I to Class II rock
129(1)
5.2.9 Possible toe berm
130(1)
5.3 Application of geometrical rules for a design
131(4)
5.4 Roundhead
135(7)
5.5 Soft soil
142(3)
5.6 Maintenance aspects
145(2)
6 Armourstone and Quarrying
147(26)
6.1 Introduction
147(4)
6.2 Armourstone gradings
151(7)
6.2.1 Introduction
151(1)
6.2.2 Grading curves in research
151(2)
6.2.3 EN 13383 system for standard gradings
153(3)
6.2.4 Non-standard gradings from dedicated quarries
156(2)
6.3 Quarry yield prediction
158(7)
6.4 Blasting for armourstone
165(5)
6.5 Quarry planning
170(3)
7 Construction
173(26)
7.1 Introduction
173(1)
7.2 Armourstone quarry in the contract
173(1)
7.3 Equipment
174(6)
7.4 Placement and tolerances
180(10)
7.4.1 Armourstone placement
180(5)
7.4.2 Tolerances
185(1)
7.4.3 Definition of rock surface and survey method for constructed profile
186(4)
7.5 Weight assessment of rock gradings in-situ
190(9)
7.5.1 Weight assessment by estimating average rock dimensions
190(3)
7.5.2 Weight assessment of rock in-situ from block shape
193(3)
7.5.3 Comparison of the two methods
196(3)
8 Geometrical Design into Practice, Examples
199(38)
8.1 Design methods
199(11)
8.1.1 Geometrical design method for berm breakwaters
199(9)
8.1.2 Design wave climate and other conditions for examples
208(2)
8.2 Examples for a design wave height of 5 m
210(11)
8.2.1 HR IC dedicated quarry, Class I 10-20 t
210(3)
8.2.2 PR IC standard gradings, Class I 6-10 t
213(2)
8.2.3 FR MA standard gradings, Class I 3-6 t
215(2)
8.2.4 Conventional rock armour design
217(3)
8.2.5 Overall conclusions and comparison
220(1)
8.3 Examples for a design wave height of 3 m
221(7)
8.3.1 HR IC dedicated quarry, Class I 1-4 t
221(2)
8.3.2 PR MA dedicated quarry, Class I 0.5-2 t
223(2)
8.3.3 Conventional rock armour design
225(2)
8.3.4 Overall conclusions and comparison
227(1)
8.4 Examples for design a wave height of 7 m
228(9)
8.4.1 HR IC dedicated quarry, Class I 20-35 t
228(2)
8.4.2 PR IC dedicated quarry, Class I 10-20 t
230(2)
8.4.3 FR MA standard grading, Class I 6-10 t
232(2)
8.4.4 Overall conclusions and comparison
234(3)
9 Constructed Examples
237(50)
9.1 Introduction
237(1)
9.2 Hardly reshaping berm breakwater
237(7)
9.2.1 The Dalvik berm breakwater, Iceland
237(6)
9.2.2 The Helguvik berm breakwater, new design, Iceland
243(1)
9.3 Partly reshaping berm breakwater - Icelandic-type
244(14)
9.3.1 The Sirevag berm breakwater, Norway
244(6)
9.3.2 The Hammerfest berm breakwater, Norway
250(3)
9.3.3 The Husavik berm breakwater, Iceland
253(5)
9.4 Partly reshaping berm breakwater - mass-armoured
258(3)
9.4.1 The Helguvik berm breakwater, original design, Iceland
258(3)
9.5 Fully reshaping berm breakwater
261(26)
9.5.1 The St George breakwaters, Alaska
261(5)
9.5.2 The Bakkafjordur breakwater, Iceland
266(10)
9.5.3 The Mortavika berm breakwater, Norway
276(6)
9.5.4 The Mackay Southern breakwater, Queensland, Australia
282(5)
Appendix A Relationships to Compose a Damage Profile for a Straight Rock Slope 287(2)
Appendix B Detailed Analysis of Berm Recession 289(10)
Appendix C Detailed Analysis of Wave Overtopping 299(12)
Appendix D Calculations of Examples for Geometrical Design in
Chapter 8
311(10)
Bibliography 321(6)
About the Authors 327