Atjaunināt sīkdatņu piekrišanu

E-grāmata: Design of Prestressed Concrete to Eurocode 2

(University of Sydney, Australia), (Hong Kong University of Science and Technology, Clear Water Bay, Kowloon), (University of New South Wales, Sydney, Australia)
  • Formāts: 699 pages
  • Izdošanas datums: 27-Jan-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781315389509
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 46,33 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 699 pages
  • Izdošanas datums: 27-Jan-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781315389509
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The design of structures in general, and prestressed concrete structures in particular, requires considerably more information than is contained in building codes. A sound understanding of structural behaviour at all stages of loading is essential. This textbook presents a detailed description and explanation of the behaviour of prestressed concrete members and structures both at service loads and at ultimate loads and, in doing so, provide a comprehensive and up-to-date guide to structural design.

Much of the text is based on first principles and relies only on the principles of mechanics and the properties of concrete and steel, with numerous worked examples. However, where the design requirements are code specific, this book refers to the provisions of Eurocode 2: Design of Concrete Structures and, where possible, the notation is the same as in Eurocode 2. A parallel volume is written to the Australian Standard for Concrete Structures AS3600-2009.

The text runs from an introduction to the fundamentals to in-depth treatments of more advanced topics in modern prestressed concrete structures. It suits senior undergraduate and graduate students and also practising engineers who want comprehensive introduction to the design of prestressed concrete structures. It retains the clear and concise explanations and the easy-to-read style of the first edition, but the content has been extensively re-organised and considerably expanded and updated. New chapters cover design procedures, actions and loads; prestressing systems and construction requirements; connections and detailing; and design concepts for prestressed concrete bridges. The topic of serviceability is developed extensively throughout.

All the authors have been researching and teaching the behaviour and design of prestressed concrete structures for over thirty-five years and the proposed new edition of the book reflects this wealth of experience. The work has also gained much from Professor Gilbert active and long-time involvement in the development of standards for concrete buildings and concrete bridges.

Recenzijas

"This book provides a comprehensive in-depth coverage of all aspects of analysis and design for both students and practising engineers. Explanations of structural behaviour and design concepts are given in terms that are easy to follow and understand. Requirements and application of Eurocode are fully explained and illustrated by worked examples."

-- Tony Threlfall, Consultant, UK

"It is a first rate book which should be useful to both Masters Level students and practitioners. The book is very clearly written and structured. The emphasis on providing clear explanations of physical behavior is particularly appealing."

-- Robert Vollum, Imperial College London

"The book is organized in a logical sequence from simply support beam to continuous beam and then two way slabs, from basic principles to more complicate analysis such as long term creep and shrinkage effect and cracking."

-- Neil Tsang, Coventry University, UK

"There are many diagrams and worked examples, the second edition benefiting from a clearer layout and some photographs, the first having only diagrams. It refers to provisions of Eurocode 2 (EN 1992-1-1:2004) and other relevant EN Standards where the design requirements are Code specific."

-- The Concrete Society, UK

Preface xv
Authors xix
Acknowledgements xxi
Notation and sign convention xxiii
1 Basic concepts 1(20)
1.1 Introduction
1(3)
1.2 Methods of prestressing
4(3)
1.2.1 Pretensioned concrete
4(1)
1.2.2 Post-tensioned concrete
5(1)
1.2.3 Other methods of prestressing
6(1)
1.3 Transverse forces induced by draped tendons
7(3)
1.4 Calculation of elastic stresses
10(6)
1.4.1 Combined load approach
10(2)
1.4.2 Internal couple concept
12(1)
1.4.3 Load balancing approach
13(1)
1.4.4 Introductory example
13(10)
1.4.4.1 Combined load approach
14(1)
1.4.4.2 Internal couple concept
15(1)
1.4.4.3 Load balancing approach
15(1)
1.5 Introduction to structural behaviour: Initial to ultimate loads
16(5)
2 Design procedures and applied actions 21(26)
2.1 Limit states design philosophy
21(2)
2.2 Structural modelling and analysis
23(3)
2.2.1 Structural modelling
23(1)
2.2.2 Structural analysis
24(2)
2.3 Actions and combinations of actions
26(7)
2.3.1 General
26(3)
2.3.2 Load combinations for the strength limit states
29(2)
2.3.3 Load combinations for the stability or equilibrium limit states
31(1)
2.3.4 Load combinations for the serviceability limit states
32(1)
2.4 Design for the strength limit states
33(1)
2.4.1 General
33(1)
2.4.2 Partial factors for materials
33(1)
2.5 Design for the serviceability limit states
34(4)
2.5.1 General
34(1)
2.5.2 Deflection limits
35(2)
2.5.3 Vibration control
37(1)
2.5.4 Crack width limits
37(1)
2.5.5 Partial factors for materials
38(1)
2.6 Design for durability
38(2)
2.7 Design for fire resistance
40(3)
2.8 Design for robustness
43(1)
References
44(3)
3 Prestressing systems 47(16)
3.1 Introduction
47(1)
3.2 Types of prestressing steel
47(2)
3.3 Pretensioning
49(2)
3.4 Post-tensioning
51(7)
3.5 Bonded and unbonded post-tensioned construction
58(1)
3.6 Circular prestressing
59(1)
3.7 External prestressing
60(3)
4 Material properties 63(38)
4.1 Introduction
63(1)
4.2 Concrete
63(24)
4.2.1 Composition of concrete
64(1)
4.2.2 Strength of concrete
65(3)
4.2.3 Strength specifications in Eurocode 2
68(5)
4.2.3.1 Compressive strength
68(1)
4.2.3.2 Tensile strength
69(1)
4.2.3.3 Design compressive and tensile strengths
70(2)
4.2.3.4 Compressive stress-strain curves for concrete for non-linear structural analysis
72(1)
4.2.4 Deformation of concrete
73(9)
4.2.4.1 Discussion
73(1)
4.2.4.2 Instantaneous strain
74(2)
4.2.4.3 Creep strain
76(5)
4.2.4.4 Shrinkage strain
81(1)
4.2.5 Deformational characteristics specified in Eurocode 2
82(5)
4.2.5.1 Introduction
82(1)
4.2.5.2 Modulus of elasticity
83(1)
4.2.5.3 Creep coefficient
84(2)
4.2.5.4 Shrinkage strain
86(1)
4.2.5.5 Thermal expansion
87(1)
4.3 Steel reinforcement
87(4)
4.3.1 General
87(1)
4.3.2 Specification in Eurocode 2
88(3)
4.3.2.1 Strength and ductility
88(1)
4.3.2.2 Elastic modulus
89(1)
4.3.2.3 Stress-strain curves: Design assumptions
90(1)
4.3.2.4 Coefficient of thermal expansion and density
91(1)
4.4 Steel used for prestressing
91(7)
4.4.1 General
91(3)
4.4.2 Specification in Eurocode 2
94(12)
4.4.2.1 Strength and ductility
94(1)
4.4.2.2 Elastic modulus
94(2)
4.4.2.3 Stress-strain curve
96(1)
4.4.2.4 Steel relaxation
96(2)
References
98(3)
5 Design for serviceability 101(118)
5.1 Introduction
101(1)
5.2 Concrete stresses at transfer and under full service loads
102(3)
5.3 Maximum jacking force
105(1)
5.4 Determination of prestress and eccentricity in flexural members
106(10)
5.4.1 Satisfaction of stress limits
106(8)
5.4.2 Load balancing
114(2)
5.5 Cable profiles
116(2)
5.6 Short-term analysis of uncracked cross-sections
118(18)
5.6.1 General
118(2)
5.6.2 Short-term cross-sectional analysis
120(16)
5.7 Time-dependent analysis of uncracked cross-sections
136(22)
5.7.1 Introduction
136(1)
5.7.2 The age-adjusted effective modulus method
136(2)
5.7.3 Long-term analysis of an uncracked cross-section subjected to combined axial force and bending using AEMM
138(18)
5.7.4 Discussion
156(2)
5.8 Short-term analysis of cracked cross-sections
158(12)
5.8.1 General
158(2)
5.8.2 Assumptions
160(1)
5.8.3 Analysis
160(10)
5.9 Time-dependent analysis of cracked cross-sections
170(5)
5.9.1 Simplifying assumption
170(1)
5.9.2 Long-term analysis of a cracked cross-section subjected to combined axial force and bending using the AEMM
170(5)
5.10 Losses of prestress
175(12)
5.10.1 Definitions
175(1)
5.10.2 Immediate losses
176(5)
5.10.2.1 Elastic deformation losses
176(1)
5.10.2.2 Friction in thelack and anchorage
177(1)
5.10.2.3 Friction along the tendon
177(2)
5.10.2.4 Anchorage losses
179(1)
5.10.2.5 Other causes of immediate losses
180(1)
5.10.3 Time-dependent losses of prestress
181(6)
5.10.3.1 Discussion
181(1)
5.10.3.2 Simplified method specified in EN 1992-1-1:2004
182(1)
5.10.3.3 Alternative simplified method
183(4)
5.11 Deflection calculations
187(21)
5.11.1 General
187(3)
5.11.2 Short-term moment-curvature relationship and tension stiffening
190(5)
5.11.3 Short-term deflection
195(5)
5.11.4 Long-term deflection
200(8)
5.11.4.1 Creep-induced curvature
201(1)
5.11.4.2 Shrinkage-induced curvature
202(6)
5.12 Crack control
208(8)
5.12.1 Minimum reinforcement
208(3)
5.12.2 Control of cracking without direct calculation
211(2)
5.12.3 Calculation of crack widths
213(2)
5.12.4 Crack control for restrained shrinkage and temperature effects
215(1)
5.12.5 Crack control at openings and discontinuities
216(1)
References
216(3)
6 Flexural resistance 219(42)
6.1 Introduction
219(1)
6.2 Flexural behaviour at overloads
219(3)
6.3 Design flexural resistance
222(19)
6.3.1 Assumptions
222(1)
6.3.2 Idealised compressive stress blocks for concrete
223(3)
6.3.3 Prestressed steel strain components (for bonded tendons)
226(2)
6.3.4 Determination of MRd for a singly reinforced section with bonded tendons
228(4)
6.3.5 Determination of MRd for sections containing non-prestressed reinforcement and bonded tendons
232(7)
6.3.6 Members with unbonded tendons
239(2)
6.4 Design calculations
241(7)
6.4.1 Discussion
241(1)
6.4.2 Calculation of additional non-prestressed tensile reinforcement
242(3)
6.4.3 Design of a doubly reinforced cross-section
245(3)
6.5 Flanged sections
248(6)
6.6 Ductility and robustness of prestressed concrete beams
254(6)
6.6.1 Introductory remarks
254(3)
6.6.2 Calculation of hinge rotations
257(1)
6.6.3 Quantifying ductility and robustness of beams and slabs
257(3)
References
260(1)
7 Design resistance in shear and torsion 261(48)
7.1 Introduction
261(1)
7.2 Shear in beams
261(21)
7.2.1 Inclined cracking
261(1)
7.2.2 Effect of prestress
262(2)
7.2.3 Web reinforcement
264(3)
7.2.4 Design strength of beams without shear reinforcement
267(1)
7.2.5 Design resistance of beams with shear reinforcement
268(5)
7.2.6 Summary of design requirements for shear
273(2)
7.2.7 The design procedure for shear
275(6)
7.2.8 Shear between the web and flange of a T-section
281(1)
7.3 Torsion in beams
282(9)
7.3.1 Compatibility torsion and equilibrium torsion
282(2)
7.3.2 Effects of torsion
284(1)
7.3.3 Design provisions for torsion
285(6)
7.4 Shear in slabs and footings
291(16)
7.4.1 Punching shear
291(1)
7.4.2 The basic control perimeter
292(2)
7.4.3 Shear resistance of critical shear perimeters
294(2)
7.4.4 Design for punching shear
296(11)
References
307(2)
8 Anchorage zones 309(42)
8.1 Introduction
309(1)
8.2 Pretensioned concrete: Force transfer by bond
310(5)
8.3 Post-tensioned concrete anchorage zones
315(27)
8.3.1 Introduction
315(4)
8.3.2 Methods of analysis
319(6)
8.3.2.1 Single central anchorage
321(1)
8.3.2.2 Two symmetrically placed anchorages
322(3)
8.3.3 Reinforcement requirements
325(1)
8.3.4 Bearing stresses behind anchorages
326(16)
8.4 Strut-and-tie modelling
342(6)
8.4.1 Introduction
342(1)
8.4.2 Concrete struts
343(3)
8.4.2.1 Types of struts
343(1)
8.4.2.2 Strength of struts
344(1)
8.4.2.3 Bursting reinforcement in bottle-shaped struts
344(2)
8.4.3 Steel ties
346(1)
8.4.4 Nodes
346(2)
References
348(3)
9 Composite members 351(48)
9.1 Types and advantages of composite construction
351(1)
9.2 Behaviour of composite members
352(2)
9.3 Stages of loading
354(3)
9.4 Determination of prestress
357(2)
9.5 Methods of analysis at service loads
359(33)
9.5.1 Introductory remarks
359(1)
9.5.2 Short-term analysis
360(2)
9.5.3 Time-dependent analysis
362(30)
9.6 Flexural resistance
392(1)
9.7 Horizontal shear transfer
392(6)
9.7.1 Discussion
392(2)
9.7.2 Design provisions for horizontal shear
394(4)
References
398(1)
10 Design procedures for determinate beams 399(42)
10.1 Introduction
399(1)
10.2 Types of sections
399(2)
10.3 Initial trial section
401(3)
10.3.1 Based on serviceability requirements
401(1)
10.3.2 Based on strength requirements
402(2)
10.4 Design procedures: Fully-prestressed beams
404(28)
10.4.1 Beams with varying eccentricity
405(17)
10.4.2 Beams with constant eccentricity
422(10)
10.5 Design procedures: Partially-prestressed beams
432(8)
Reference
440(1)
11 Statically indeterminate members 441(60)
11.1 Introduction
441(2)
11.2 Tendon profiles
443(3)
11.3 Continuous beams
446(28)
11.3.1 Effects of prestress
446(1)
11.3.2 Determination of secondary effects using virtual work
447(6)
11.3.3 Linear transformation of a tendon profile
453(2)
11.3.4 Analysis using equivalent loads
455(10)
11.3.4.1 Moment distribution
456(9)
11.3.5 Practical tendon profiles
465(3)
11.3.6 Members with varying cross-sectional properties
468(2)
11.3.7 Effects of creep
470(4)
11.4 Statically indeterminate frames
474(4)
11.5 Design of continuous beams
478(21)
11.5.1 General
478(1)
11.5.2 Service load range: Before cracking
479(3)
11.5.3 Service load range: After cracking
482(1)
11.5.4 Overload range and design resistance in bending
483(3)
11.5.4.1 Behaviour
483(1)
11.5.4.2 Permissible moment redistribution at the ultimate limit state condition
484(1)
11.5.4.3 Secondary effects at the ultimate limit state condition
485(1)
11.5.5 Steps in design
486(13)
References
499(2)
12 Two-way slabs: Behaviour and design 501(62)
12.1 Introduction
501(3)
12.2 Effects of prestress
504(3)
12.3 Balanced load stage
507(2)
12.4 Initial sizing of slabs
509(7)
12.4.1 Existing guidelines
509(1)
12.4.2 Serviceability approach for the calculation of slab thickness
510(4)
12.4.2.1 Slab system factor, K
512(2)
12.4.3 Discussion
514(2)
12.5 Other serviceability considerations
516(3)
12.5.1 Cracking and crack control in prestressed slabs
516(1)
12.5.2 Long-term deflections
517(2)
12.6 Design approach: General
519(1)
12.7 One-way slabs
519(1)
12.8 Two-way edge-supported slabs
520(13)
12.8.1 Load balancing
520(2)
12.8.2 Methods of analysis
522(11)
12.9 Flat plate slabs
533(26)
12.9.1 Load balancing
533(2)
12.9.2 Behaviour under unbalanced load
535(2)
12.9.3 Frame analysis
537(2)
12.9.4 Direct design method
539(1)
12.9.5 Shear resistance
540(1)
12.9.6 Deflection calculations
541(14)
12.9.7 Yield line analysis of flat plates
555(4)
12.10 Flat slabs with drop panels
559(1)
12.11 Band-beam and slab systems
560(1)
References
561(2)
13 Compression and tension members 563(38)
13.1 Types of compression members
563(1)
13.2 Classification and behaviour of compression members
564(2)
13.3 Cross-section analysis: Compression and bending
566(14)
13.3.1 Strength interaction diagram
566(2)
13.3.2 Strength analysis
568(11)
13.3.3 Biaxial bending and compression
579(1)
13.4 Slenderness effects
580(11)
13.4.1 Background
580(4)
13.4.2 Slenderness criteria
584(1)
13.4.3 Moment magnification method
585(6)
13.5 Reinforcement requirements for compression members
591(1)
13.6 Transmission of axial force through a floor system
591(2)
13.7 Tension members
593(7)
13.7.1 Advantages and applications
593(1)
13.7.2 Behaviour
594(6)
References
600(1)
14 Detailing: Members and connections 601(54)
14.1 Introduction
601(1)
14.2 Principles of detailing
602(8)
14.2.1 When is steel reinforcement required?
602(1)
14.2.2 Objectives of detailing
603(1)
14.2.3 Sources of tension
604(6)
14.2.3.1 Tension caused by bending (and axial tension)
604(1)
14.2.3.2 Tension caused by load reversals
604(1)
14.2.3.3 Tension caused by shear and torsion
605(1)
14.2.3.4 Tension near the supports of beams
605(1)
14.2.3.5 Tension within the supports of beams or slabs
606(1)
14.2.3.6 Tension within connections
607(1)
14.2.3.7 Tension at concentrated loads
607(1)
14.2.3.8 Tension caused by directional changes of internal forces
608(2)
14.2.3.9 Other common sources of tension
610(1)
14.3 Anchorage of deformed bars
610(9)
14.3.1 Introductory remarks
610(3)
14.3.2 Design anchorage length
613(4)
14.3.3 Lapped splices
617(2)
14.4 Stress development and coupling of tendons
619(1)
14.5 Detailing of beams
619(15)
14.5.1 Anchorage of longitudinal reinforcement: General
619(4)
14.5.2 Maximum and minimum requirements for longitudinal steel
623(1)
14.5.3 Curtailment of longitudinal reinforcement
624(1)
14.5.4 Anchorage of stirrups
625(5)
14.5.5 Detailing of support and loading points
630(4)
14.6 Detailing of columns and walls
634(4)
14.6.1 General requirements
634(1)
14.6.2 Transverse reinforcement in columns
635(3)
14.6.3 Longitudinal reinforcement in columns
638(1)
14.6.4 Requirements for walls
638(1)
14.7 Detailing of beam-column connections
638(8)
14.7.1 Introduction
638(1)
14.7.2 Knee connections (or two-member connections)
639(3)
14.7.2.1 Closing moments
640(1)
14.7.2.2 Opening moments
640(2)
14.7.3 Exterior three-member connections
642(3)
14.7.4 Interior four-member connections
645(1)
14.8 Detailing of corbels
646(1)
14.9 Joints in structures
647(7)
14.9.1 Introduction
647(1)
14.9.2 Construction joints
648(1)
14.9.3 Control joints (contraction joints)
649(2)
14.9.4 Shrinkage strips
651(1)
14.9.5 Expansion joints
652(1)
14.9.6 Structural joints
652(2)
References
654(1)
Index 655
Raymond Ian Gilbert is Emeritus Professor of Civil Engineering at The University of New South Wales, UK, and Deputy Director of the UNSW Centre for Infrastructure Engineering and Safety, Australia. His books, Structural Analysis: Principles, Methods and Modelling and Time-Dependent Behaviour of Concrete Structures were also published by CRC Press.



Neil Colin Mickleborough is Professor of Civil Engineering and the Director of the Center for Engineering Education Innovation at Hong Kong University of Science and Technology, China.



Gianluca Ranzi is Professor of Civil Engineering, ARC Future Fellow and Director of the Centre for Advanced Structural Engineering at the University of Sydney, Australia.