Atjaunināt sīkdatņu piekrišanu

E-grāmata: Determining Spectra in Quantum Theory

  • Formāts: PDF+DRM
  • Sērija : Progress in Mathematical Physics 44
  • Izdošanas datums: 12-Sep-2006
  • Izdevniecība: Birkhauser Boston Inc
  • Valoda: eng
  • ISBN-13: 9780817644390
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Progress in Mathematical Physics 44
  • Izdošanas datums: 12-Sep-2006
  • Izdevniecība: Birkhauser Boston Inc
  • Valoda: eng
  • ISBN-13: 9780817644390
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Themainobjectiveofthisbookistogiveacollectionofcriteriaavailablein the spectral theory of selfadjoint operators, and to identify the spectrum and its components in the Lebesgue decomposition. Many of these criteria were published in several articles in di erent journals. We collected them, added some and gave some overview that can serve as a platform for further research activities. Spectral theory of SchrØ odinger type operators has a long history; however the most widely used methods were limited in number. For any selfadjoint operatorA on a separable Hilbert space the spectrum is identi ed by looking atthetotalspectralmeasureassociatedwithit;oftenstudyingsuchameasure meant looking at some transform of the measure. The transforms were of the form f,?(A)f which is expressible, by the spectral theorem, as ?(x)dµ (x) for some ?nite measureµ . The two most widely used functions? were the sx ?1 exponential function?(x)=e and the inverse function?(x)=(x z) . These functions are usable in the sense that they can be manipulated with respect to addition of operators, which is what one considers most often in the spectral theory of SchrØ odinger type operators. Starting with this basic structure we look at the transforms of measures from which we can recover the measures and their components in Chapter 1. In Chapter 2 we repeat the standard spectral theory of selfadjoint op- ators. The spectral theorem is given also in the HahnHellinger form. Both Chapter 1 and Chapter 2 also serve to introduce a series of de nitions and notations, as they prepare the background which is necessary for the criteria in Chapter 3.

Recenzijas

In my opinion, the basic idea of the monograph is to help graduate students working on spectral theory and beginning researchers in the field to build a toolkit. The book definitely has more than enough material for this purpose, some of which is quite advanced, and it is very up to date. ... In conclusion, I believe that this book will prove extremely useful for its target audience (advanced graduate students with an interest in this area). Moreover, it will also very much feel at home on the bookshelf of an expert.(MATHEMATICAL REVIEWS)

Preface v
Measures and Transforms
1(28)
Measures
1(4)
Fourier Transform
5(2)
The Wavelet Transform
7(9)
Borel Transform
16(8)
Gesztesy--Krein--Simon ξ Function
24(1)
Notes
25(4)
Selfadjointness and Spectrum
29(30)
Selfadjointness
29(8)
Linear Operators and Their Inverses
29(1)
Closed Operators
30(2)
Adjoint and Selfadjoint Operators
32(2)
Sums of Linear Operators
34(1)
Sesquilinear Forms
35(2)
Spectrum and Resolvent Sets
37(3)
Spectral Theorem
40(3)
Spectral Measures and Spectrum
43(2)
Spectral Theorem in the Hahn--Hellinger Form
45(4)
Components of the Spectrum
49(4)
Characterization of the States in Spectral Subspaces
53(3)
Notes
56(3)
Criteria for Identifying the Spectrum
59(52)
Borel Transform
59(9)
Fourier Transform
68(1)
Wavelet Transform
69(1)
Eigenfunctions
70(2)
Commutators
72(8)
Criteria Using Scattering Theory
80(24)
Wave Operators
81(14)
Stability of the Absolutely Continuous Spectra
95(9)
Notes
104(7)
Operators of Interest
111(42)
Unperturbed Operators
111(14)
Laplacians
112(7)
Unperturbed Semigroups and Their Kernels
119(1)
Associated Processes
120(1)
Regular Dirichlet Forms, Capacities and Equilibrium Potentials
121(4)
Perturbed Operators
125(17)
Deterministic Potentials
125(8)
Random Potentials
133(2)
Singular Perturbations
135(7)
Notes
142(11)
Applications
153(50)
Borel Transforms
153(30)
Kotani Theory
153(7)
Aizenman--Molchanov Method
160(12)
Bethe Lattice
172(9)
Jaksic--Last Theorem
181(2)
Scattering
183(13)
Decaying Random Potentials
183(4)
Obstacles and Potentials
187(9)
Notes
196(7)
References 203(12)
Index 215