Atjaunināt sīkdatņu piekrišanu

E-grāmata: Diagrammatic Algebra

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 159,67 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is an introduction to techniques and results in diagrammatic algebra. It starts with abstract tensors and their categorifications, presents diagrammatic methods for studying Frobenius and Hopf algebras, and discusses their relations with topological quantum field theory and knot theory. The text is replete with figures, diagrams, and suggestive typography that allows the reader a glimpse into many higher dimensional processes. The penultimate chapter summarizes the previous material by demonstrating how to braid 3- and 4- dimensional manifolds into 5- and 6-dimensional spaces.

The book is accessible to post-qualifier graduate students, and will also be of interest to algebraists, topologists and algebraic topologists who would like to incorporate diagrammatic techniques into their research.
Chapter 1 Introduction
1(10)
Chapter 2 Elements
11(20)
1 Sets, relations, and functions
11(1)
2 Diagrammatics of linear algebra
12(10)
3 Algebras
22(6)
4 Simplfying, clarifying, and abstracting
28(1)
5 General categorical principles
29(2)
Chapter 3 Planar trivalent diagrams
31(8)
1 Small categories
31(1)
2 Trivalent graphs
32(7)
Chapter 4 The multi-category FA
39(32)
1 Composition of double arrows
39(26)
2 Reversible arrows and additional double arrows
65(6)
Chapter 5 Triple arrows for FA
71(16)
1 Algebraic identities as double arrows
71(2)
2 The category of double arrows
73(1)
3 Critical aspects of weakly invertible 1-arrows
74(10)
4 Coalgebra axioms as triple arrows
84(3)
Chapter 6 Surfaces in 3-space
87(32)
1 Guide to terminology
87(1)
2 Objects, 1-arrows, and double arrows
88(2)
3 Triple arrows in S
90(7)
4 Quadruple arrows in the multi-category S
97(12)
5 Functorial equivalent multi-categories
109(10)
Chapter 7 Beyond surfaces
119(54)
1 Different objects and arrows
119(26)
2 Weak inverses revisited
145(12)
3 Higher order arrows in FA
157(11)
4 Restricting the collections of arrows
168(5)
Chapter 8 Parentheses and so forth
173(18)
1 The Temperley-Lieb algebra
173(4)
2 Other Catalan-like things
177(6)
3 Higher associativities
183(5)
4 Higher dimensional foams
188(3)
Chapter 9 Knots in space
191(50)
1 Oriented knots and higher categories
191(4)
2 Reidemeister moves
195(5)
3 The fundamental group and related invariants
200(9)
4 The Jones polynomial
209(5)
5 The braid group
214(1)
6 More algebraic structures
215(10)
7 Trivalent graphs
225(16)
Chapter 10 Foams and surfaces in 4-space
241(52)
1 Knotted surfaces
241(12)
2 Foams in 4-space
253(16)
3 Shalgebras and qualgebras
269(4)
4 Homology
273(3)
5 More abstract tensors
276(14)
6 Conclusion
290(3)
Chapter 11 Higher dimensional braids
293(48)
1 Geometric braids
293(2)
2 Glyphographic description of surface braids
295(3)
3 Surface braids
298(24)
4 Charts in 3- and 4-dimensions
322(16)
5 Conclusion
338(3)
Chapter 12 Globular multi-categories
341(16)
1 Arrows and cells
342(7)
2 Group presentations
349(6)
3 Conclusion
355(2)
Bibliography 357(4)
Index 361
J. Scott Carter, University of South Alabama, Mobile, AL.

Seiichi Kamada, Osaka University, Japan.