Atjaunināt sīkdatņu piekrišanu

Differential Equations, Bifurcations and Chaos [Mīkstie vāki]

  • Formāts: Paperback / softback, 250 pages, height x width: 235x155 mm, Approx. 250 p., 1 Paperback / softback
  • Sērija : Springer Undergraduate Mathematics Series
  • Izdošanas datums: 30-Sep-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031995422
  • ISBN-13: 9783031995422
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmata tiks piegādāta 3-6 nedēļas pēc tās publicēšanas.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 250 pages, height x width: 235x155 mm, Approx. 250 p., 1 Paperback / softback
  • Sērija : Springer Undergraduate Mathematics Series
  • Izdošanas datums: 30-Sep-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031995422
  • ISBN-13: 9783031995422

This book introduces qualitative methods for understanding differential equations, especially when analytical solutions are not possible. Aimed at second-year undergraduate students in mathematics or science, it assumes prior knowledge of calculus, linear algebra, and curve sketching. The book focuses on phase plane methods for second-order differential equations, supported by earlier sections on analytical techniques and phase lines for first-order equations. The later chapters explore bifurcation theory and chaos. Emphasizing application over theory, the book includes diagrams, worked examples, and exercises, with minimal use of formal proofs.

Chapter
1. Introduction.
Chapter
2. Analytical Methods for Differential
Equations.
Chapter
3. Qualitative Methods for First-Order Differential
Equations.
Chapter
4. Second-Order Linear Systems.
Chapter
5. Second-Order
Nonlinear Systems.
Chapter
6. Bifurcations.
Chapter
7. Difference
Equations.
Chapter
8. Chaos.
Chapter
9. Solutions to Odd-Numbered Exercises.
Paul C. Matthews was on the faculty of the University of Nottingham for more than two decades. A specialist of dynamical systems and their numerical analysis, he is the author of the bestselling textbook Vector Calculus (Springer, 1998).