Atjaunināt sīkdatņu piekrišanu

E-grāmata: Differential Equations: A Linear Algebra Approach

  • Formāts: 626 pages
  • Izdošanas datums: 26-Sep-2021
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000436785
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 626 pages
  • Izdošanas datums: 26-Sep-2021
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781000436785

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Differential Equations: A Linear Algebra Approach follows an innovative approach of inculcating linear algebra and elementary functional analysis in the backdrop of even the simple methods of solving ordinary differential equations. The contents of the book have been made user-friendly through concise useful theoretical discussions and numerous illustrative examples practical and pathological.

This book follows an innovative approach of inculcating linear algebra and elementary functional analysis in the backdrop of even the simple methods of solving ordinary differential equations. It is made user-friendly through concise useful theoretical discussions and numerous illustrative examples practical and pathological.
Preface v
1 A Prelude to Differential Equations
1(40)
1.1 Introduction
1(6)
1.2 Formulation of Differential Equation---Its Significance
7(10)
1.3 Classification of Solutions: General Particular and Singular Solutions
17(3)
1.4 More about Solutions of an ODE
20(4)
1.5 Existence-Uniqueness Theorem for Cauchy Problem
24(6)
1.6 Importance of Lipschitz's condition involved in existence uniqueness theorem in the light of a comparative study between Radiactive decay and Leaky bucket problems
30(4)
1.7 First Order Ode and some of its Qualitative Aspects
34(7)
2 Equations of First Order and First Degree
41(89)
2.1 Introduction
41(2)
2.2 Exact Differential Equation
43(18)
2.3 Homogeneous Differential Equations
61(9)
2.4 Integrating Factor
70(10)
2.5 Linear Equations and Bernoulli Equations
80(13)
2.6 Integrating Factors Revisited
93(2)
2.7 Riccati Equation
95(6)
2.8 Application of Differential Equations of First Order
101(12)
2.9 Orthogonal Trajectories and Oblique Trajectories
113(17)
3 A Class of First Order Non-Linear Odes
130(46)
3.1 Introduction
130(1)
3.2 Non-linear First Order Ode Solvable for p
130(4)
3.3 Non-linear Ode Solvable for y
134(1)
3.4 Non-linear Ode Solvable for x
135(3)
3.5 Existence and Uniqueness Problem
138(6)
3.6 Envelopes and Other Loci
144(10)
3.7 Clairaut's Equation and Lagrange's Equation
154(22)
4 Linear Algebraic Framework in Differential Equations
176(33)
4.1 Introduction
176(1)
4.2 Linear Spaces
176(8)
4.3 Linear Maps or Transformations
184(1)
4.4 Normed Linear Space
185(6)
4.5 Bounded Linear Transformation
191(6)
4.6 Invertible Operators
197(12)
5 Differential Equations of Higher Order
209(75)
5.1 Introduction
209(1)
5.2 Theoretical Aspects
209(10)
5.3 Wronskian
219(6)
5.4 Working Rules for Homogeneous Linear Ode
225(6)
5.5 Few Theoretical Results from Linear Algebra
231(2)
5.6 Symbolic Operator and Particular Integral
233(5)
5.7 Method of Variation of Parameters
238(13)
5.8 Special Methods for finding Particular Integrals
251(11)
5.9 Method of Undetermined Co-efficients
262(12)
5.10 Fourier Series Method for Particular Integrals
274(10)
6 Second Order Linear Ode: Solution Techniques & Qualitative Analysis
284(96)
6.1 Introduction
284(1)
6.2 Reduction of Order Method (D'Alembert's Method)
285(6)
6.3 Method of Inspection for finding one Integral
291(3)
6.4 Transformation of Second Order Ode by changing the Independent Variable
294(12)
6.5 Transformation of a Second order Ode by changing the Dependent Variable
306(3)
6.6 Qualitative Aspects of Second Order Differential Equations
309(9)
6.7 Exact Second Order Differential Equations
318(5)
6.8 Adjoint Equation and Self-adjoint Odes
323(9)
6.9 Sturm-Liouville Problems
332(25)
6.10 Green's Function Approach to IVP
357(5)
6.11 Green's Function Approach to BVP
362(18)
7 Laplace Transformations in Ordinary Differential Equations
380(58)
7.1 Introduction
380(1)
7.2 Definition and Anatomy of Laplace Transform
380(28)
7.3 Laplace transformation technique of solving Ordinary Differential Equations
408(30)
8 Series Solutions of Linear Differential Equations
438(90)
8.1 Introduction
438(1)
8.2 Review of Power Series
439(5)
8.3 Solutions about Ordinary Points in the Domain
444(17)
8.4 Solution about Regular Singular Points
461(7)
8.5 Frobenius Method
468(41)
8.6 Hypergeometric Equation
509(5)
8.7 Irregular singular points
514(14)
9 Solving Linear Systems by Matrix Methods
528(74)
9.1 Introduction
528(6)
9.2 Eigenvalue Problems of a square matrix: Diagonalisability
534(13)
9.3 Solution of Vector Differential Equation using Eigenvalues of Associated Matrix
547(4)
9.4 Operator Norm and Its use in defining Exponentials of Matrices
551(6)
9.5 Generalised Eigenvectors: Solution to IVP
557(8)
9.6 Jordanization of Matrices and Solution of Ode
565(18)
9.7 Fundamental Matrix and Liouville Theorem
583(10)
9.8 Alternative Ansatz for Computation of eAx
593(9)
Appendix 602(9)
Reference 611(2)
Index 613
Anindya Dey is Assistant Professor in the Department of Mathematics, St Xaviers Colleges, Kolkata.