Atjaunināt sīkdatņu piekrišanu

E-grāmata: Differential Optical Absorption Spectroscopy: Principles and Applications

  • Formāts: PDF+DRM
  • Sērija : Physics of Earth and Space Environments
  • Izdošanas datums: 30-May-2008
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540757764
  • Formāts - PDF+DRM
  • Cena: 177,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Physics of Earth and Space Environments
  • Izdošanas datums: 30-May-2008
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540757764

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Measurement techniques form the basis of our knowledge about atmospheric composition and chemistry. Presently, important questions of atmospheric chemistry center on urban pollution, free-radical chemistry, degradation of greenhouse gases and the budgets of tropospheric and stratospheric ozone. Among the many different optical spectroscopic methods that are in use, DOAS has emerged as a universal technique to measure the concentrations of atmospheric trace gases by making use of the characteristic absorption features of gas molecules along a path of known length in the open atmosphere. This book reviews the basics of atmospheric chemistry, radiation transport, and optical spectroscopy before detailing the principles underlying DOAS. The second part of the book describes the design and application of DOAS instruments as well as the evaluation and interpretation of spectra. The recent expansion of DOAS application to the imaging of trace gas distributions by ground, aircraft, and satellite-based instruments is also covered. Written for graduate students and researchers with a general background in environmental physics this book especially addresses the needs of those working in the field of atmospheric chemistry, pollution monitoring, and volcanology"--Back cover.

The first part of this book reviews the basics of atmospheric chemistry, radiation transport, and optical spectroscopy before detailing the principles underlying DOAS. The second part describes the design and application of DOAS instruments as well as the evaluation and interpretation of spectra. The recent expansion of DOAS application to the imaging of trace gas distributions by ground, aircraft, and satellite-based instruments is also covered.

The first part of this book reviews the basics of atmospheric chemistry, radiation transport, and optical spectroscopy before detailing the principles underlying DOAS. The second part describes the design and application of DOAS instruments as well as the evaluation and interpretation of spectra. The recent expansion of DOAS application to the imaging of trace gas distributions by ground, aircraft, and satellite-based instruments is also covered.

1 Introduction 1
2 Atmospheric Chemistry 5
2.1 Atmospheric Structure and Composition
7
2.1.1 Trace Species in the Atmosphere
9
2.1.2 Quantification of Gas Abundances
10
2.1.3 Lifetime of Trace Gases in the Atmosphere
14
2.2 Direct Emission of Trace Gases to the Atmosphere
14
2.2.1 Nitrogen Species
16
2.2.2 Sulphur Species
18
2.2.3 Carbon-Containing Species
19
2.3 Ozone in the Troposphere
21
2.3.1 Mechanism of Tropospheric Ozone Formation
23
2.3.2 Ozone Formation in Urban Centres and Downwind
25
2.4 Radical Processes in the Atmosphere
27
2.4.1 Sources of Hydrogen Radicals (OH and HO2)
29
2.4.2 Temporal Variation of the HOx Source Strength
32
2.4.3 Chemistry of Hydrogen Radicals (OH and HO2)
32
2.5 Oxides of Nitrogen in the Atmosphere
38
2.5.1 Classical Chemistry of Oxides of Nitrogen in the Atmosphere
39
2.5.2 Tropospheric Chemistry of Nitrate Radicals, NO3
41
2.5.3 Nitrous Acid, HONO in the Atmosphere
45
2.6 Tropospheric Chemistry of VOCs
47
2.7 Tropospheric Chemistry of Sulphur Species
50
2.7.1 Sulphur Dioxide – SO2
50
2.7.2 Reduced Sulphur Species: DMS, COS, CS2, H2S
52
2.7.3 Influence of Sulphur Species on the Climate, the CLAW Hypothesis
54
2.8 Chemistry of Halogen Radicals in the Troposphere
55
2.8.1 Tropospheric Sources of Inorganic Halogen Species
55
2.8.2 Tropospheric Cycles of Inorganic Halogen Species
58
2.8.3 Potential Impact of Inorganic Halogen Species on Tropospheric Chemistry
62
2.9 Oxidation Capacity of the Atmosphere
63
2.10 Stratospheric Ozone Layer
65
2.10.1 Stratospheric Ozone Formation: The Chapman Cycle
65
2.10.2 Stratospheric Ozone Chemistry: Extension of the Chapman Cycle
67
2.10.3 Stratospheric Ozone Hole
72
2.10.4 Recovery of Stratospheric Ozone
75
3 Interaction of Molecules with Radiation 77
3.1 Electromagnetic Radiation and Matter
77
3.2 Energy Levels and Transitions in Atoms
78
3.3 Energy Levels and Transitions in Molecules
79
3.3.1 Rotational Energy Levels and Transitions
80
3.3.2 Vibrational Energy Levels
81
3.3.3 Electronic Energy Levels
81
3.4 Population of States
82
3.5 Molecular Spectra
83
3.6 Broadening Mechanisms and Line Width of Absorption Lines
84
3.6.1 The Natural Line Width
85
3.6.2 Pressure Broadening (Collisional Broadening)
85
3.6.3 Doppler Broadening
86
3.6.4 Realistic Broadening in the UV- and Visible Spectral Ranges
87
3.7 Spectroscopic Techniques for Chemical Analysis
88
3.7.1 The Fluorescence Techniques
88
3.7.2 Absorption Spectroscopy
89
4 Radiation Transport in the Atmosphere 91
4.1 Basic Quantities Related to Radiation Transport
91
4.2 Interaction Processes of Radiation in the Atmosphere
92
4.2.1 Absorption Processes
92
4.2.2 Rayleigh Scattering
93
4.2.3 Raman Scattering
94
4.2.4 Polarisation Properties of Vibrational Raman Scattered Light and Line Filling in
98
4.2.5 Scattering and Absorption of Radiation by Particles (Mie Scattering)
99
4.3 The Radiation Transport Equation
102
4.3.1 Absorption of Radiation
103
4.3.2 Scattering of Radiation
103
4.3.3 Thermal Emission
104
4.3.4 Simplification of the Radiation Transport Equation
105
4.4 Light Attenuation in the Atmosphere
105
4.4.1 Wide Beams in the Atmosphere, the Two-Stream Model
105
4.4.2 Narrow Beams in the Atmosphere
107
4.5 The Effect of Atmospheric Refraction (El-Mirage Effects)
108
4.6 The Effect of Atmospheric Turbulence
108
4.7 Practical Considerations About Radiation in the Atmosphere
110
5 Measurement Techniques for Atmospheric Trace Gas Concentrations and Other Parameters 113
5.1 History of Measurement Techniques
114
5.2 The Role of Measurements in Atmospheric Chemistry
114
5.2.1 Long-term Observations
115
5.2.2 Regional and Episodic Studies
115
5.2.3 Investigation of Fast in-situ (Photo)Chemistry
116
5.3 Requirements for Measurement Techniques
116
5.4 Grouping Measurement Techniques in Categories
117
5.4.1 In-situ Versus Remote Sensing Techniques
119
5.5 Experimental Evidence for the Presence of Radicals in the Atmosphere
119
5.6 Spectroscopic Techniques
124
5.6.1 Microwave Spectroscopy
124
5.6.2 IR Spectroscopy
125
5.6.3 UV/Visible Absorption Spectroscopy
126
5.7 Selection Criteria for Spectroscopic Techniques
127
5.7.1 Tuneable Diode Laser Spectroscopy (TDLS)
127
5.7.2 Photo Acoustic Spectroscopy (PAS)
128
5.7.3 Light Detection And Ranging (LIDAR)
128
5.7.4 Differential Absorption LIDAR (DIAL)
130
5.7.5 White Light LIDAR
130
5.7.6 Laser-Induced Fluorescence (LIF)
131
5.7.7 Cavity-Ringdown (CRDS) and Cavity Enhanced Spectroscopy (CEAS)
132
5.7.8 Mask Correlation Spectroscopy (COSPEC)
132
5.7.9 Differential Optical Absorption Spectroscopy (DOAS)
133
6 Differential Absorption Spectroscopy 135
6.1 The History of Absorption Spectroscopy
135
6.2 Classical Absorption Spectroscopy
137
6.3 The DOAS Principle
138
6.4 Experimental Setups of DOAS Measurements
141
6.4.1 Active DOAS
141
6.4.2 Passive DOAS
144
6.5 Trace Gases Measured by DOAS
146
6.6 Precision and Accuracy of DOAS
152
6.7 Mathematical Description of the DOAS Approach
155
6.7.1 Fundamentals of the DOAS Approach
155
6.7.2 Application of the DOAS Approach in Practical Situations
158
7 The Design of DOAS Instruments 175
7.1 Design Considerations of DOAS Instruments
175
7.2 Key Components of DOAS Systems
177
7.3 Light Sources for Active DOAS
178
7.3.1 Characteristics of Artificial Light Sources
178
7.3.2 Natural Light Sources
190
7.3.3 Calibration Light Sources
192
7.4 Optical Elements for DOAS Systems
194
7.4.1 Some Principles of Optics
194
7.4.2 Mirrors
198
7.4.3 Prisms
202
7.4.4 Lenses
202
7.4.5 Apertures, Entendue, Lagrange Invariant
204
7.4.6 Diffraction at Apertures
205
7.4.7 Quartz-fibres, Mode Mixers, and Cross-section Shaping
206
7.4.8 Filters
208
7.4.9 R.etro-reflectors
209
7.5 Spectrometers/Interferometers for DOAS Systems
212
7.5.1 Diffraction Gratings
213
7.5.2 Spectrometers
215
7.5.3 Interferometers (FT Spectrometry)
219
7.5.4 Characteristics of Spectrometers
219
7.6 Detectors for UV/Visual Spectrometers
223
7.6.1 Geometrical Focal Plane Sampling Requirements
223
7.6.2 Optomechanical Scanning Devices and Photomultiplier Tube
228
7.6.3 Solid-state Array Detectors and Characteristics
230
7.6.4 PDA Detectors
236
7.6.5 CCD Array Detectors
236
7.6.6 CMOS Detectors
240
7.7 Telescope Designs
241
7.8 Optical Multi-pass Systems
242
7.8.1 White Multi-reflection Cells
243
7.8.2 Herriott Multi-reflection Cells
245
7.8.3 Passive Resonators (CEAS, CRDS)
246
7.9 Active DOAS Systems
247
7.9.1 'Classic' Active Long-path System
247
7.9.2 High-resolution DOAS Spectrometers
248
7.9.3 Recent Designs of Active Long-path DOAS System
250
7.9.4 DOAS Systems with Optical Multi-pass Systems
252
7.10 Passive DOAS Systems
253
7.10.1 Direct Sun/Moon Setup
253
7.10.2 Zenith Scattered Light DOAS
253
7.10.3 Off-axis, MAX-DOAS Instruments
255
7.10.4 Imaging DOAS (I-DOAS) Instruments
257
7.10.5 Aircraft-based Experiments
259
7.10.6 Balloon-borne Instruments
260
7.10.7 Satellite Instruments
260
7.11 Light Utilisation in a Long-path Spectrometer
266
7.12 Software Controlling DOAS Instruments
269
7.13 Optimising DOAS Instruments
271
7.13.1 Optimum Light Path Length in Active DOAS Systems
272
7.13.2 Optimum Spectral Resolution
274
7.13.3 Optimum Measurement Time
274
7.14 Measurement Process Control
277
7.14.1 Active DOAS Systems — Standard Approach
977
7.14.2 Active DOAS Systems — MCST
279
7.14.3 Passive DOAS Systems
280
7.14.4 Off-axis Scattered Sunlight DOAS Systems
280
7.15 Mechanical Actuators
282
7.15.1 Stepper Motors
283
7.15.2 Other Actuators
284
7.16 Information Needed for Later Analysis
285
8 Evaluation of DOAS Spectra, Sensitivity, and Detection Limits 287
8.1 Linear Fitting Methods
288
8.1.1 Unweighted Linear Least Squares Fit
289
8.1.2 Weighted—Correlated Least Squares Fit
290
8.2 Non-linear Fitting Methods
290
8.2.1 Gradient Method
290
8.2.2 Gauf3—Newton Method
291
8.2.3 Levenberg—Marquardt Method
291
8.3 DOAS Analysis Procedure
293
8.3.1 The Linear Model
294
8.3.2 High- and Low-pass Filtering
295
8.3.3 Wavelength Alignment
298
8.3.4 Realisation
299
8.3.5 Error Analysis
302
8.4 Determination of Reference Spectra
317
8.4.1 Theoretical Basis of Reference Spectra Simulation: Convolution
318
8.4.2 Practical Implementation of Reference Spectra Simulation
320
8.4.3 Optimum Resolution of Literature Reference Spectra'
321
8.5 Detection Limits
323
8.6 Residual Spectra
324
8.7 Systematic Errors in the Analysis
325
8.7.1 Interferences
326
8.7.2 Spectrometer Stray Light and Offsets
326
9 Scattered-light DOAS Measurements 329
9.1 Air Mass Factors (AMF)
332
9.1.1 Direct Light AMF
333
9.1.2 Scattered Zenith Light AMF
335
9.1.3 Scattered Off-axis and Multi-axis AMF
339
9.1.4 AMFs for Airborne and Satellite Measurements
342
9.1.5 Correction of Fraunhofer Structures Based on AMFs
343
9.1.6 The Influence of Rotational Raman scattering, the 'Ring Effect'
345
9.2 AMF Calculations
347
9.2.1 Single-scattering RT Models
348
9.2.2 Multiple-scattering RT Models
350
9.2.3 Applications and Limitations of the 'Traditional' DOAS Method for Scattered Light Applications
351
9.3 AMFs for Scattered Light Ground-Based DOAS Measurements
354
9.3.1 ZSL-DOAS Measurements
354
9.3.2 Off-axis-DOAS Measurements
357
9.3.3 MAX-DOAS Measurements
358
9.3.4 Accuracy of MAX-DOAS AMF Calculations
366
9.3.5 The Box-AMF Concept
369
9.4 Aircraft Observed Scattered Light (AMAX-DOAS)
371
9.5 Satellite Observed Scattered Light
372
9.5.1 Radiative Transfer in Nadir Geometry — the Role of Clouds
373
9.5.2 The Analysis of Satellite-limb Scattered Light Observations
377
10 Sample Application of 'Active' DOAS with Artificial Light Sources 379
10.1 Air Pollution Studies and Monitoring Applications
380
10.1.1 Measurement of Urban Pollutants
380
10.1.2 Vertical Profiles of Air Pollution by Multiple DOAS Light Beams
398
10.2 Investigation of Free Radical Processes in the Atmosphere
401
10.2.1 Measurement of OH Radicals by DOAS
403
10.2.2 Measurement of NO3 Radicals
404
10.2.3 Measurement of Halogen Oxides
412
10.3 Investigation in Photoreactors (Smog Chambers) by DOAS
417
10.4 Validation of Active DOAS
418
11 Sample Application of 'Passive' DOAS 429
11.1 Atmospheric Measurements by Direct Light Spectroscopy
430
11.1.1 Ground-based Measurement of Atmospheric Species
431
11.1.2 Balloon- and Aircraft-borne Measurement of Stratospheric Species
432
11.2 Stratospheric Measurements by Ground-based Scattered Light DOAS
436
11.2.1 Determination of Stratospheric NO2 and O3 from the Ground
437
11.2.2 Observation of Halogen Radicals in the Polar Stratosphere
441
11.2.3 Halogen Radical Observation in the Mid-latitude Stratosphere
442
11.2.4 Observation of Stratospheric Trace Gas Profiles
444
11.3 Measurement of Tropospheric Species by Ground-based DOAS
448
11.3.1 MAX-DOAS Observations in Polluted Regions
449
11.3.2 MAX-DOAS Observations of Halogen Oxides at Mid-latitudes
450
11.3.3 Halogen Oxide Radicals in the Polar Troposphere
453
11.3.4 Halogen Oxide Radicals in the Free Troposphere
453
11.3.5 Trace Gases in the Marine Environment
455
11.3.6 Determination of Aerosol Properties from MAX-DOAS Observations
456
11.3.7 Determination of NO3 Vertical Profiles
459
11.3.8 Emission from Point Sources
459
11.3.9 Imaging Trace Gas Distributions (I-DOAS)
464
11.4 Scattered Light Aircraft Measurements of Stratospheric Species
466
11.5 Scattered Light Aircraft Measurements of Tropospheric Species
468
11.6 Satellite Observations Using DOAS Techniques
469
11.7 Satellite Observations of Stratospheric Species
473
11.7.1 Stratospheric O3
473
11.7.2 Stratospheric NO2
473
11.7.3 Stratospheric OClO
475
11.8 Satellite Observations of Tropospheric Species
477
11.8.1 Tropospheric O3
478
11.8.2 Tropospheric NO2
479
11.8.3 Tropospheric Formaldehyde
481
11.8.4 Tropospheric SO2
483
11.8.5 Tropospheric BrO
485
11.8.6 Tropospheric Carbon Monoxide
487
11.8.7 Tropospheric Methane
488
11.8.8 Tropospheric Water Vapour
489
11.9 Determination of Photon Path Lengths by 'Reversed DOAS'
491
11.9.1 Average Path Lengths from Low Resolution Measurement of Weak Absorbers
491
11.9.2 Path Length Distributions from High Resolution Measurement of Strong Absorbers
491
11.9.3 Measurement of Trace Gases Inside Clouds
494
12 DOAS: Yesterday, Today, and Tomorrow 495
12.1 Passive DOAS Applications
495
12.1.1 MAX-DOAS
497
12.1.2 Aerosol and Cloud Monitoring
498
12.1.3 Imaging DOAS
498
12.1.4 Tomography
498
12.1.5 Satellite Instruments
498
12.2 Active DOAS Applications
499
12.2.1 New Trace Gases
499
12.2.2 Infrared Measurements
500
12.2.3 Hydrocarbons
500
12.2.4 Air Pollution Monitoring
500
12.2.5 BTX Monitoring
500
12.2.6 Fence-Line Monitoring
501
12.2.7 Tomography
501
12.2.8 Range Resolved Technology/Broadband LIDAR
501
12.3 Development of the Underlying Technology
502
12.3.1 New Light-Sources
502
12.3.2 New Detectors
502
12.3.3 New Software
503
12.3.4 Improved System Design
503
Literature
505
Appendix A: Spectral Positions of Emission Lines from Calibration Lamps and Lasers 569
A.1 Cadmium Lines
569
A.2 Mercury Lines
570
A.3 Hydrogen Lines
570
A.4 Neon I Lines
571
A.5 Zinc Lines
572
Appendix B: Absorption Spectra of Molecules Measurable by DOAS 573
B.1 Nitric Oxide, NO
573
B.2 Nitrogen Dioxide, NO2
573
B.3 Ammonia, NH3
575
B.4 Formaldehyde, HCHO
575
B.5 Glyoxal, CHOCHO
576
B.6 Sulphur Dioxide, SO2
576
B.7 Carbon Disulfide, CS2
577
B.8 Ozone, O3
577
B.9 Monocyclic Aromatic Hydrocarbons
578
B.10 Polycyclic Aromatic Hydrocarbons
581
B.11 Nitrous Acid, HONO
581
B.12 Halogen Monoxides
582
B.12.1 Chlorine Monoxide, ClO
583
B.12.2 Bromine Monoxide, BrO
583
B.12.3 Iodine Monoxide, IO
584
B.13 Halogen Dioxides
584
B.13.1 Chlorine Dioxide, OClO
584
B.13.2 Bromine Dioxide, OBrO
584
B.13.3 Iodine Dioxide, OIO
585
B.14 Molecular Iodine (I2)
585
B.15 Water Vapour, H2O
585
B.16 Nitrate Radical, NO3
586
B.17 OH Radicals
586
B.18 Oxygen, O2
588
B.19 Oxygen Dimer, O4 or (O2)2
589
Index 593