Atjaunināt sīkdatņu piekrišanu

Differential Topology [Hardback]

4.00/5 (63 ratings by Goodreads)
  • Formāts: Hardback, 222 pages, weight: 583 g
  • Sērija : Chelsea Publications
  • Izdošanas datums: 30-Aug-2010
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821851934
  • ISBN-13: 9780821851937
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 79,42 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 222 pages, weight: 583 g
  • Sērija : Chelsea Publications
  • Izdošanas datums: 30-Aug-2010
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821851934
  • ISBN-13: 9780821851937
Citas grāmatas par šo tēmu:
Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within.

The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying ideatransversalitythe authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the PoincaréHopf index theorem, and Stokes theorem.

The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance.

The book is suitable for either an introductory graduate course or an advanced undergraduate course.
Prefaces xi
Straight Forward to the Student xv
Table of Symbols
xvii
Chapter 1 Manifolds and Smooth Maps
1(56)
§1 Definitions
1(7)
§2 Derivatives and Tangents
8(5)
§3 The Inverse Function Theorem and Immersions
13(7)
§4 Submersions
20(7)
§5 Transversality
27(6)
§6 Homotopy and Stability
33(6)
§7 Sard's Theorem and Morse Functions
39(9)
§8 Embedding Manifolds in Euclidean Space
48(9)
Chapter 2 Transversality and Infersection
57(37)
§1 Manifolds with Boundary
57(7)
§2 One-Manifolds and Some Consequences
64(3)
§3 Transversality
67(10)
§4 Intersection Theory Mod 2
77(8)
§5 Winding Numbers and the Jordan-Brouwer Separation Theorem
85(6)
§6 The Borsuk-Ulam Theorem
91(3)
Chapter 3 Oriented Intersection Theory
94(57)
§1 Motivation
94(1)
§2 Orientation
95(12)
§3 Oriented Intersection Number
107(12)
§4 Lefschetz Fixed-Point Theory
119(13)
§5 Vector Fields and the Poincare-Hope Theorem
132(9)
§6 The Hope Degree Theorem
141(7)
§7 The Euler Characteristic and Triangulations
148(3)
Chapter 4 Integration on Manifolds
151(51)
§1 Introduction
151(2)
§2 Exterior Algebra
153(9)
§3 Differential Forms
162(3)
§4 Integration on Manifolds
165(9)
§5 Exterior Derivative
174(4)
§6 Cohomology with Forms
178(4)
§7 Stokes Theorem
182(6)
§8 Integration and Mappings
188(6)
§9 The Gauss-Bonnet Theorem
194(8)
Appendix 1 Measure Zero and Sard's Theorem 202(6)
Appendix 2 Classification of Compact One-Manifolds 208(4)
Bibliography 212(5)
Index 217