Atjaunināt sīkdatņu piekrišanu

E-grāmata: Diffusion Models of Environmental Transport

, (Louisiana State University, Baton Rouge, Louisiana, USA)
  • Formāts: 208 pages
  • Izdošanas datums: 14-Dec-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781351455060
  • Formāts - PDF+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 208 pages
  • Izdošanas datums: 14-Dec-2017
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781351455060

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Fate and transport models are critical components in the determination of the exposure to and risk from hazardous contaminants. Analytical models are preferable because they are generally more accessible, more reliable, and require fewer computational resources. Surprisingly, until today, only a limited number of analytical models have been accessible in the literature.
Now, there is Diffusion Models of Environmental Transport, which provides more than 40 analytical models of diffusion and advective-diffusion in one, two, and three layer systems, subject to a wide range of boundary and initial conditions. This text illustrates applications to contaminant transport in sediments and soils, including porewater and vapor transport, and also provides Mathcad spreadsheets to aid in the use of these models.
The authors supply complete details of the solutions to the models for those who wish for a deeper understanding. For others, who do not have the time or the need, the solutions themselves are ready to be picked up and used.
Reible and Choy use their 20-plus years of cumulative experience to create a thorough exploration of fate and transport models. This comprehensive text furnishes an invaluable reference for students and environmental professionals.
Environmental Transport Modeling
1(4)
Introduction
1(4)
Preliminaries
5(12)
Equilibrium Between Environmental Phases
5(4)
Chemical equilibrium in air-water phases
5(1)
Chemical equilibrium in water-organic liquid phases
6(1)
Chemical equilibrium in the air-water-soil phases
7(2)
Diffusion and the Diffusion Coefficient
9(2)
Diffusion in free phases
9(1)
Effective diffusion coefficient in a porous medium
10(1)
Advection and the Surface Mass Transfer Coefficient
11(1)
Laminar flow boundary layer theory and turbulent flow mass transfer
11(1)
Penetration theory
12(1)
Mass Balance and Transport Equations
12(5)
References
15(2)
Diffusion in a Semi-Infinite System
17(16)
Introduction
17(1)
Analysis Summary
17(8)
Semi-infinite region with uniform initial concentration and zero concentration at the surface
17(1)
Semi-infinite region with uniform initial concentration and mass transfer or reaction at the surface
18(2)
Semi-infinite region with uniform initial concentration capped by a finite layer with a different uniform initial concentration, and zero concentration at the surface
20(1)
Semi-infinite region with uniform initial concentration, zero concentration at the surface, and first-order decay
21(1)
Semi-infinite region with uniform initial concentration, mass transfer or reaction at the surface, and first-order decay
22(1)
Semi-infinite region with uniform initial concentration capped by a finite layer with a different uniform initial concentration, zero concentration at the surface, and first-order decay
23(2)
Numerical Evaluation
25(1)
Development
25(8)
Laplace transformation method
25(4)
Principle of superposition
29(1)
Variable transformation for first-order decay
30(2)
References
32(1)
Diffusion in a Finite Layer
33(20)
Introduction
33(1)
Analysis Summary
33(9)
Finite layer with arbitrary initial concentrations, zero concentration at the surface, and zero flux at the base
34(1)
Finite layer with uniform initial concentration, zero surface concentration, and zero flux at the base
35(1)
Finite layer with arbitrary initial concentrations, mass transfer or reaction at the surface, and zero flux at the base
36(1)
Finite layer with uniform initial concentration, mass transfer or reaction at the surface, and zero flux at the base
37(1)
Finite layer with arbitrary initial concentrations, zero concentration at the surface, zero flux at the base, and first-order decay
38(1)
Finite layer with uniform initial concentration, zero surface concentration, zero flux at the base, and first-order decay
39(1)
Finite layer with arbitrary initial concentrations, mass transfer or reaction at the surface, zero flux at the base, and first-order decay
40(1)
Finite layer with uniform initial concentration, mass transfer or reaction at the surface, zero flux at the base, and first-order decay
41(1)
Numerical Evaluation
42(4)
Evaluation of the initial condition integral
42(2)
zero surface concentration
44(1)
surface mass transfer
44(1)
Determining transcendental function roots
45(1)
Development
46(7)
Separation of variables
46(1)
Solution to the temporal problem
46(1)
Solution to the spatial problem
46(5)
Variable transformation for first-order decay
51(1)
References
52(1)
Diffusion in a Two-Layer Composite System
53(24)
Introduction
53(1)
Analysis Summary
53(7)
System dynamics and general solution for a two-layer composite
53(2)
System eigenfunctions and eigenvalues
55(1)
Two-layer finite system with arbitrary initial concentrations, zero concentration at the surface, and zero flux at the base
56(2)
Two-layer finite system with arbitrary initial concentrations, mass transfer or reaction at the surface, and zero flux at the base
58(2)
Numerical Evaluation
60(7)
Concentration calculation
61(1)
Surface flux calculation
62(1)
Range of significance for eigenvalues
62(1)
Determination of eigenvalues in range
63(2)
Eigenfunction evaluation
65(1)
Normalization integral evaluation
65(1)
Initialization integral evaluation
65(2)
Development
67(10)
Separation of variables
67(1)
Solution to the temporal problem
67(1)
Solution to the spatial problem
67(5)
Initial conditions
72(2)
Variable transformation for first-order decay
74(1)
References
75(2)
Diffusion in a Three-Layer Composite System
77(32)
Introduction
77(1)
Analysis Summary
77(10)
System dynamics and general solution for a three-layer composite
77(2)
System eigenfunctions and eigenvalues
79(2)
Three-layer finite system with arbitrary initial concentrations, zero concentration at the surface, and zero flux at the base
81(3)
Three-layer finite system with arbitrary initial concentrations, mass transfer or reaction at the surface, and zero flux at the base
84(3)
Numerical Evaluation
87(6)
Concentration calculation
87(1)
Surface flux calculation
88(1)
Range of significance for eigenvalues
89(1)
Determination of eigenvalues in range
90(2)
Eigenfunction evaluation
92(1)
Normalization integral evaluation
92(1)
Initialization integral evaluation
92(1)
General numerical evaluation comments
93(1)
Development
93(16)
Separation of variables
93(1)
Solution to the temporal problem
94(1)
Solution to the spatial problem
94(10)
Initial conditions
104(2)
Variable transformation for first-order decay
106(1)
References
107(2)
Advection-Diffusion Models
109(10)
Introduction
109(1)
Analysis Summary
109(5)
Semi-infinite region with uniform initial concentration with a constant concentration boundary condition
109(1)
Semi-infinite region with uniform initial concentration with a constant flux boundary condition
110(1)
Semi-infinite region with uniform initial concentration with a boundary condition given by a finite-timed pulse at a constant concentration
110(1)
Semi-infinite region with uniform initial concentration with a boundary condition given by a finite-timed pulse at a constant flux
111(1)
Semi-infinite region with uniform initial concentration capped by a finite region of a different uniform initial condition, with a constant concentration boundary condition
111(1)
Semi-infinite region with uniform initial concentration capped by a finite region of a different uniform initial condition, with a constant flux boundary condition
112(1)
Semi-infinite region with uniform initial concentration capped by a finite region of a different uniform initial condition, with a boundary condition given by a finite-timed pulse at a constant concentration
113(1)
Semi-infinite region with uniform initial concentration capped by a finite region of a different uniform initial condition, with a boundary condition given by a finite-timed pulse at a constant flux
113(1)
Numerical Evaluation
114(1)
Development
114(5)
References
117(2)
Volatile Liquid Evaporation
119(8)
Introduction
119(1)
Analysis Summary
119(4)
Evaporation and vapor diffusion through soil/sediment with uniform initial liquid saturation, with zero vapor concentration at the surface
119(1)
Evaporation and vapor diffusion through soil/sediment with uniform initial liquid saturation, with a vapor mass transfer boundary condition at the surface
120(1)
Evaporation and vapor diffusion through soil/sediment with uniform initial liquid saturation below a finite clean capped region, with zero vapor concentration at the surface
121(1)
Evaporation and vapor diffusion through soil/sediment with uniform initial liquid saturation below a finite clean capped region, with a vapor mass transfer boundary condition at the surface
122(1)
Numerical Evaluation
123(1)
Development
123(4)
Evaporation and vapor diffusion through soil/sediment with uniform initial liquid saturation, with zero vapor concentration at the surface
123(1)
Evaporation and vapor diffusion through soil/sediment with uniform initial liquid saturation, with a vapor mass transfer boundary condition at the surface
124(1)
Evaporation and vapor diffusion through soil/sediment with uniform initial liquid saturation below a finite clean capped region, with zero vapor concentration at the surface
125(1)
Evaporation and vapor diffusion through soil/sediment with uniform initial liquid saturation below a finite clean capped region, with a vapor mass transfer boundary condition at the surface
125(1)
References
126(1)
Diffusion with Time-Dependent Partition Coefficients
127(22)
Introduction
127(1)
Mathematical Analysis
127(2)
Analysis Summary
129(11)
Diffusion in a thin layer with time-dependent soil-air partition coefficient, zero surface concentration, a no-flow bottom boundary condition, and constant initial conditions
129(4)
Diffusion time-dependent partition coefficient, zero surface concentration, no flow bottom boundary, and arbitrary initial conditions
133(1)
Diffusion in a thin surface boundary layer with time-dependent soil-air partition coefficient, zero surface concentration, a constant concentration source at the lower boundary, and constant initial conditions
134(6)
Variable Transformations on a Variety of Time-Dependent Air-Soil Partition Coefficient Functions
140(2)
Constant soil-air partition coefficient
140(1)
Linear soil-air partition coefficient
140(1)
Exponential soil-air partition coefficient
141(1)
Development
142(7)
Transformation of variables
142(1)
Separation of variables
142(3)
Time-dependent boundary condition
145(3)
References
148(1)
Constant Flux Liquid Evaporation
149(4)
Introduction
149(1)
Analysis and Development
149(4)
References
151(2)
APPENDIX 153(1)
A. Error Function
153(2)
B. Laplace Transformation
155(3)
C. Roots of Transcendental Equations
158(2)
D. Predicting the Diffusion Coefficient in Vapors
160(2)
E. Predicting the Diffusion Coefficient in Liquids
162(3)
F. Sample Calculations of Models Using Mathcad™
165


Choy, Bruce; Reible, Danny D.