Atjaunināt sīkdatņu piekrišanu

E-grāmata: Digital Communication Receivers - Synchronization, Channel Estimation and Signal Processing: Synchronization, Channel Estimation, and Signal Processing 2nd Volume 2 ed. [Wiley Online]

  • Wiley Online
  • Cena: 242,41 €*
  • * this price gives unlimited concurrent access for unlimited time
Conventionally, the ever-increasing demand for mobile communication is viewed as calling for optimally utilizing the available bandwidth. The premise of this international trio of experts is that communications engineers can trade concerns over the performance measures of bandwidth and power efficiency for signal processing complexity. Thus, they assert that they focus on topics covered more superficially in other texts in the field. Their coverage overviews basic material (in random process theory, signal analysis, and estimation theory), baseband and passband communications, and communications over fading channels. Annotation c. by Book News, Inc., Portland, Or.

Digital Communication Receivers Synchronization, Channel Estimation, and Signal Processing Digital Communication Receivers offers a complete treatment on the theoretical and practical aspects of synchronization and channel estimation from the standpoint of digital signal processing. The focus on these increasingly important topics, the systematic approach to algorithm development, and the linked algorithm-architecture methodology in digital receiver design are unique features of this book. The material is structured according to different classes of transmission channels. In Part C, baseband transmission over wire or optical fiber is addressed. Part D covers passband transmission over satellite or terrestrial wireless channels. Part E deals with transmission over fading channels. Designed for the practicing communication engineer and the graduate student, the book places considerable emphasis on helpful examples, summaries, illustrations, and bibliographies. Contents include:
* Basic material
* Baseband communications
* Passband transmission
* Receiver structure for PAM signals
* Synthesis of synchronization algorithms
* Performance analysis of synchronizers
* Bit error degradation caused by random tracking errors
* Frequency estimation
* Timing adjustment by interpolation
* DSP system implementation
* Characterization, modeling, and simulation of linear fading channels
* Detection and parameter synchronization on fading channels
* Receiver structures for fading channels
* Parameter synchronization for flat fading channels
* Parameter synchronization for selective fading channels
Preface xix(4)
Acknowledgments xxiii(2)
About the Authors xxv
PART A Introduction 1(8)
Introduction and Preview 1(8)
PART B Basic Material 9(52)
Chapter 1 Basic Material
9(52)
1.1 Stationary and Cyclostationary Processes
9(16)
1.1.1 Continuous-Time Stationary Processes
9(3)
1.1.2 Continuous-Time Cyclostationary Processes
12(4)
1.1.3 Discrete-Time Stationary Processes
16(2)
1.1.4 Examples
18(6)
1.1.5 Main Points
24(1)
Bibliography
25(1)
1.2 Complex Envelope Representation
25(21)
1.2.1 Complex Envelope of Deterministic Signals
26(9)
1.2.2 Complex Envelope of Random Processes
35(8)
1.2.3 Example
43(2)
1.2.4 Main Points
45(1)
Bibliography
46(1)
1.3 Band-Limited Signals
46(8)
1.3.1 Correlation Function and Power Spectrum
46(2)
1.3.2 Sampling Theorem
48(1)
1.3.3 Sampling of Bandpass Signals
48(5)
1.3.4 Main Points
53(1)
Bibliography
54(1)
1.4 Fundamentals of Estimation Theory
54(7)
1.4.1 Bounds on Estimation Errors
54(4)
Bibliography
58(3)
PART C Baseband Communications 61(150)
Chapter 2 Baseband Communications
61(150)
2.1 Introduction to Digital Baseband Communication
61(18)
2.1.1 The Baseband PAM Communication System
61(4)
2.1.2 The Nyquist Criterion for Eliminating ISI
65(5)
2.1.3 Line Coding
70(2)
2.1.4 Main Points
72(1)
2.1.5 Bibliographical Notes
73(5)
Bibliography
78(1)
2.2 Clock Synchronizers
79(10)
2.2.1 Introduction
79(1)
2.2.2 Categorization of Clock Synchronizers
80(2)
2.2.3 Examples
82(6)
2.2.4 Disturbance in Clock Synchronizers
88(1)
2.3 Error-Tracking Synchronizers
89(29)
2.3.1 The General Structure of Error-Tracking Synchronizers
89(2)
2.3.2 Open-Loop Statistics of the Timing Error Detector Output Signal
91(3)
2.3.3 The Equivalent Model and Its Implications
94(3)
2.3.4 The Linearized Equivalent Model
97(2)
2.3.5 The Linearized Timing Error Variance
99(5)
2.3.6 Discrete-Time Hybrid Synchronizers
104(4)
2.3.7 Simulation of Error-Tracking Synchronizers
108(3)
2.3.8 Main Points
111(1)
2.3.9 Bibliographical Notes
112(1)
2.3.10 Appendix
113(4)
Bibliography
117(1)
2.4 Spectral Line Generating Clock Synchronizers
118(30)
2.4.1 Nonlinearity Followed by a PLL with Multiplying Timing Error Detector
118(10)
2.4.2 Nonlinearity Followed by Narrowband Bandpass Filter
128(5)
2.4.3 Phase-Locked Loops versus Bandpass Filters
133(5)
2.4.4 Jitter Accumulation in a Repeater Chain
138(4)
2.4.5 Simulation of Spectral Line Generating Synchronizers
142(2)
2.4.6 Main Points
144(2)
2.4.7 Bibliographical Notes
146(1)
Bibliography
147(1)
2.5 Examples
148(63)
2.5.1 Example 1: The Squaring Synchronizer
148(27)
2.5.2 Example 2: The Synchronizer with Zero-Crossing Timing Error Detector (ZCTED)
175(21)
2.5.3 Example 3: The Mueller and Muller Synchronizer
196(10)
Bibliography
206(5)
PART D Passband Communication over Time Invariant Channels 211(370)
Chapter 3 Passband Transmission
211(14)
3.1 Transmission Methods
211(1)
3.2 Channel and Transceiver Models
212(6)
3.2.1 Linear Channel Model
212(5)
3.2.2 Nonlinear Channel Model
217(1)
3.3 Channel Capacity of Multilevel Phase Signals
218(7)
Bibliography
224(1)
Chapter 4 Receiver Structure for PAM Signals
225(46)
4.1 Functional Block Diagram of a Receiver for PAM Signal
225(9)
4.1.1 Timing Recovery
229(3)
4.1.2 Phase Recovery
232(2)
Bibliography
234(1)
4.2 Sufficient Statistics for Reception in Gaussian Noise
234(12)
4.2.1 Vector Space Representation of Signals
235(1)
4.2.2 Band-Limited Signals
236(3)
4.2.3 Equivalence Theorem
239(2)
4.2.4 Sufficient Statistics
241(3)
4.2.5 Main Points
244(2)
Bibliography
246(1)
4.3 Optimum ML Receivers
246(25)
4.3.1 Receiver Objectives and Synchronized Detection
246(3)
4.3.2 Optimum ML Receiver for Constant Synchronization Parameters
249(9)
4.3.3 Digital Matched Filter
258(9)
4.3.4 Main Points
267(1)
4.3.5 Bibliographical Notes
268(1)
4.3.6 Appendix
268(2)
Bibliography
270(1)
Chapter 5 Synthesis of Synchronization Algorithms
271(54)
5.1 Derivation of ML Synchronization Algorithms
271(4)
5.2 Estimator Structures for Slowly Varying Synchronization Parameters
275(8)
5.2.1 Time Scale Separation
275(2)
5.2.2 Truncation and L Symbols Approximation of the Likelihood Estimators
277(3)
5.2.3 Maximum Search Algorithm
280(1)
5.2.4 Error Feedback Systems
281(1)
5.2.5 Main Points
282(1)
Bibliography
283(1)
5.3 NDA Timing Parameter Estimation
283(6)
5.4 NDA Timing Parameter Estimation by Spectral Estimation
289(7)
Bibliography
295(1)
5.5 DA (DD) Timing Parameter Estimators
296(2)
Bibliography
298(1)
5.6 Timing Error Feedback Systems at Higher Than Symbol Rate
298(6)
5.6.1 DD and Phase-Directed Timing Recovery
298(5)
5.6.2 NDA Timing Recovery
303(1)
Bibliography
304(1)
5.7 Timing Error Feedback Systems at Symbol Rate
304(7)
5.7.1 Ad Hoc Performance Criteria
310(1)
5.7.2 Main Points
311(1)
Bibliography
311(1)
5.8 (DD&D(XXX)) Oarrier Phasor Estimation and Phase Error Feedback
311(2)
5.9 Phasor-Locked Loop (PHLL)
313(3)
Bibliography
316(1)
5.10 NDA Carrier Phasor Estimation and Phase Error Feedback Systems for M-PSK
316(5)
5.10.1 NDA Phasor Estimation for M-PSK Signals
316(1)
5.10.2 NDA Phase Error Feedback Systems
317(4)
5.10.3 Main Points
321(1)
Bibliography
321(1)
5.11 Phase and Timing Recovery for Nonlinear Modulation Schemes
321(4)
Bibliography
322(3)
Chapter 6 Performance Analysis of Synchronizers
325(94)
6.1 Bounds on Synchronization Parameter Errors
325(6)
6.2 Appendix: Fisher Information Matrix
331(9)
Bibliography
340(1)
6.3 Tracking Performance of Carrier and Symbol Synchronizers
340(45)
6.3.1 Introduction
340(1)
6.3.2 Tracking Performance Analysis Methods
341(6)
6.3.3 Decision-Directed (DD&D(XXX)) Carrier Synchronization
347(2)
6.3.4 Non-Decision-Aided Carrier Synchronization
349(2)
6.3.5 Decision-Directed (DD) Symbol Synchronization
351(4)
6.3.6 Non-Decision-Aided Symbol Synchronizer
355(3)
6.3.7 Tracking Performance Comparison
358(11)
6.3.8 Effect of Time-Varying Synchronization Parameters
369(7)
6.3.9 Main Points
376(2)
6.3.10 Bibliographical Notes
378(3)
6.3.11 Appendix: Self-Noise Contribution to Timing Error Variance
381(2)
Bibliography
383(2)
6.4 Cycle Slipping
385(15)
6.4.1 Introduction
385(1)
6.4.2 Effect of Cycle Slips on Symbol Detection
385(2)
6.4.3 Cycle Slips in Feedback Synchronizers
387(4)
6.4.4 Cycle Slips in Feedforward Synchronizers
391(4)
6.4.5 Main Points
395(1)
6.4.6 Bibliographical Notes
396(1)
6.4.7 Appendix: Approximating a Discrete-Time System by a Continuous-Time System
397(2)
Bibliography
399(1)
6.5 Acquisition of Carrier Phase and Symbol Timing
400(19)
6.5.1 Introduction
400(1)
6.5.2 Feedback Synchronizers
401(6)
6.5.3 Feedforward Synchronizers for Short Burst Operation
407(3)
6.5.4 Feedforward Synchronizers for Long Burst Operation and Continuous Operation
410(6)
6.5.5 Main Points
416(1)
6.5.6 Bibliographical Notes
417(1)
Bibliography
418(1)
Chapter 7 Bit Error Rate Degradation Caused by Random Tracking Errors
419(26)
7.1 Introduction
419(1)
7.2 ML Detection of Data Symbols
419(1)
7.3 Derivation of an Approximate Expression for BER Degradation
420(2)
7.4 M-PSK Signal Constellation
422(5)
7.4.1 Carrier Phase Errors
426(1)
7.4.2 Timing Errors
426(1)
7.5 M-PAM and M(2)-QAM Signal Constellations
427(5)
7.5.1 Carrier Phase Errors
431(1)
7.5.2 Timing Errors
431(1)
7.6 Examples
432(7)
7.7 Coded Transmission
439(1)
7.8 Main Points
440(1)
7.9 Bibliographical Notes
440(5)
Bibliography
442(3)
Chapter 8 Frequency Estimation
445(60)
8.1 Introduction Classification of Frequency Control Systems
445(3)
8.1.1 Channel Model and Likelihood Function
445(2)
8.1.2 Classification of Algorithms
447(1)
8.1.3 Main Points
448(1)
8.2 Frequency Estimator Operating Independently of Timing Information
448(16)
8.2.1 Frequency Estimation via Spectrum Analysis
453(4)
8.2.2 Frequency Estimation via Phase Increment Estimation
457(5)
Bibliography
462(2)
8.3 Frequency Error Feedback Systems Operating Independently of Timing Information
464(14)
8.3.1 Tracking Performance Analysis
469(3)
8.3.2 Appendix: Calculation of the Self-Noise Term
472(3)
8.3.3 Discussion of NDA and ND(XXX) Algorithms
475(1)
8.3.4 Main Points
476(1)
Bibliography
477(1)
8.4 Frequency Estimators Operating with Timing Information
478(14)
8.4.1 Derivation of the Frequency Estimation Algorithm
478(4)
8.4.2 Performance in the Presence of Noise
482(4)
8.4.3 Miscellaneous Modifications of DA Estimators
486(2)
8.4.4 Example of an All-Feedforward Carrier Synchronization Structure
488(3)
Bibliography
491(1)
8.5 Frequency Error Feedback Systems Operating with Timing Information
492(7)
8.5.1 Performance in the Presence of Additive Noise
494(2)
8.5.2 Appendix: Computation of var{XXX} as a Function of E(s) N(0)
496(3)
8.5.3 Main Points
499(1)
8.6 Frequency Estimators for MSK Signals
499(4)
8.6.1 Performance Analysis
502(1)
8.7 Bibliographical Notes
503(2)
Bibliography
504(1)
Chapter 9 Timing Adjustment by Interpolation
505(28)
9.1 Digital Interpolation
505(18)
9.1.1 MMSE FIR Interpolator
507(6)
9.1.2 Polynomial FIR Interpolator
513(5)
9.1.3 Classical Lagrange Interpolation
518(3)
9.1.4 Appendix
521(2)
9.2 Interpolator Control
523(10)
9.2.1 Interpolator Control for Timing Error Feedback Systems
523(6)
9.2.2 Interpolator Control for Timing Estimators
529(1)
9.2.3 Tracking Performance and Decimation Revisited
530(1)
9.2.4 Main Points
530(1)
9.2.5 Bibliographical Notes
531(1)
Bibliography
531(2)
Chapter 10 DSP System Implementation
533(48)
10.1 Digital Signal Processing Hardware
533(3)
10.2 DSP System Hardware-Software Co-Design
536(1)
10.3 Quantization and Number Representation
537(3)
10.4 ASIC Design Case Study
540(22)
10.4.1 Implementation Loss
541(1)
10.4.2 Design Methodology
542(1)
10.4.3 Digital Video Broadcast Specification
542(2)
10.4.4 Receiver Structure
544(1)
10.4.5 Input Quantization
545(4)
10.4.6 Timing and Phase Synchronizer Structure
549(1)
10.4.7 Digital Phase-Locked Loop (DPLL) for Phase Synchronization
549(10)
10.4.8 Timing Recovery
559(3)
10.5 Bit Error Performance of the DVB Chip
562(1)
10.6 Implementation
563(1)
10.7 CAD Tools and Design Methodology
564(2)
10.7.1 Algorithm Design
565(1)
10.7.2 Architecture Design
565(1)
10.8 Topics Not Covered
566(2)
Bibliography
566(2)
10.9 Bibliography Notes on Convolutional Coding and Decoding
568(7)
10.9.1 High-Rate Viterbi Decoders
568(1)
10.9.2 Area-Efficient Implementations for Low to Medium Speed
569(1)
10.9.3 SMU Architectures
570(1)
10.9.4 Decoding of Concatenated Codes
571(1)
10.9.5 Punctured Codes
571(1)
Bibliography
572(3)
10.10 Bibliography Notes on Reed-Solomon Decoders
575(6)
10.10.1 Conventional Decoding Methods
575(1)
10.10.2 Soft-Decision RS Decoding
576(1)
10.10.3 Concatenated Codes
576(1)
Bibliography
577(4)
PART E Communication over Fading Channels 581(238)
Chapter 11 Characterization, Modeling, and Simulation of Linear Fading Channels
581(50)
11.1 Introduction
581(1)
11.2 Digital Transmission over Continuous-Time and Discrete-Equivalent Fading Channels
582(28)
11.2.1 Transmission over Continuous-Time Fading Channels
590(1)
11.2.2 Discrete-Equivalent Transmission Behavior of Fading Channels
590(5)
11.2.3 Statistical Characterization of Fading Channels
595(13)
11.2.4 Main Points
608(2)
11.3 Modeling and Simulation of Discrete-Equivalent Fading Channels
610(15)
11.3.1 Direct Filtering Approach to Selective Fading Channel Simulation
610(5)
11.3.2 Transformed Filtering Approach to Selective Fading Channel Simulation
615(9)
11.3.3 Main Points
624(1)
11.4 Bibliographical Notes
625(6)
Bibliography
626(5)
Chapter 12 Detection and Parameter Synchronization on Fading Channels
631(48)
12.1 Fading Channel Transmission Models and Synchronization Parameters
631(7)
12.1.1 Flat Fading Channel Transmission
634(1)
12.1.2 Selective Fading Channel Transmission
635(2)
12.1.3 Main Points
637(1)
12.2 Optimal Joint Detection and Synchronization
638(38)
12.2.1 The Bayesian Approach to Joint Detection and Synchronization
639(3)
12.2.2 Optimal Linear Estimation of Static and Gaussian Dynamic Synchronization Parameters
642(9)
12.2.3 Joint Detection and Estimation for Flat Fading Channels
651(11)
12.2.4 Joint Detection and Estimation for Selective Fading Channels
662(8)
12.2.5 Main Points
670(2)
12.2.6 Appendices
672(4)
12.3 Bibliographical Notes
676(3)
Bibliography
677(2)
Chapter 13 Receiver Structures for Fading Channels
679(44)
13.1 Outer and Inner Receiver for Fading Channels
679(6)
13.2 Inner Receiver for Flat Fading Channels
685(6)
13.3 Inner Receiver for Selective Fading Channels
691(23)
13.3.1 Recursive Computation of the Decision Metric
691(3)
13.3.2 Maximum-Likelihood Sequence Detection
694(3)
13.3.3 Reduced-Complexity ML Sequence Detection
697(4)
13.3.4 Adjustment of Inner Receiver Components for Selective Fading Channels
701(6)
13.3.5 Example: Inner Receiver Prefiltering for Selective Fading Channels
707(6)
13.3.6 Main Points
713(1)
13.4 Spread Spectrum Communication
714(3)
13.4.1 Modulator and Demodulator Structure
714(2)
13.4.2 Synchronization of Pseudorandom Signals
716(1)
13.5 Bibliographical Notes
717(6)
Bibliography
718(5)
Chapter 14 Parameter Synchronization for Flat Fading Channels
723(42)
14.1 Non-Data-Aided (NDA) Flat Fading Channel Estimation and Detection
723(16)
14.1.1 Optimal One-Step Channel Prediction
723(2)
14.1.2 Reduced-Complexity One-Step Channel Prediction
725(6)
14.1.3 Decision-Directed (DD) Flat Fading Channel Estimation and Detection
731(7)
14.1.4 Main Points
738(1)
14.2 Data-Aided (DA) Flat Fading Channel Estimation and Detection
739(23)
14.2.1 DA Flat Fading Channel Estimation
741(3)
14.2.2 Uniform DA Channel Sampling and Estimation
744(4)
14.2.3 Aliasing and End Effects in DA Channel Estimation
748(4)
14.2.4 Example: DA Receiver for Uncoded M-PSK
752(5)
14.2.5 Example: DA Receiver for Trellis-Coded Modulation
757(4)
14.2.6 Main Points
761(1)
14.3 Bibliographical Notes
762(3)
Bibliography
762(3)
Chapter 15 Parameter Synchronization for Selective Fading Channels
765(54)
15.1 Non-Data-Aided (NDA) Selective Fading Channel Estimation and Detection
765(17)
15.1.1 LMS-Kalman and LMS-Wiener One-Step Channel Prediction
765(7)
15.1.2 Decision-Directed (DD) Selective Fading Channel Estimation and Detection
772(10)
15.1.3 Main Points
782(1)
15.2 Data-Aided (DA) Selective Fading Channel Estimation and Detection
782(32)
15.2.1 DA Selective Fading Channel Estimation
783(4)
15.2.2 Maximum-Likelihood DA Snapshot Acquisition
787(6)
15.2.3 Example: DA Receiver for Uncoded M-PSK
793(11)
15.2.4 Example: DA Receiver for Trellis-Coded Modulation
804(8)
15.2.5 Main Points
812(2)
15.3 Bibliographical Notes
814(5)
Bibliography
814(5)
Index 819


Heinrich Meyr is the author of Digital Communication Receivers, Volume 2: Synchronization, Channel Estimation, and Signal Processing, published by Wiley.

Marc Moeneclaey is the author of Digital Communication Receivers, Volume 2: Synchronization, Channel Estimation, and Signal Processing, published by Wiley.