Atjaunināt sīkdatņu piekrišanu

E-grāmata: Digital Molecular Magnetic Resonance Imaging

  • Formāts: EPUB+DRM
  • Sērija : Series in BioEngineering
  • Izdošanas datums: 24-Aug-2024
  • Izdevniecība: Springer Nature
  • Valoda: eng
  • ISBN-13: 9789819763702
  • Formāts - EPUB+DRM
  • Cena: 166,55 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Series in BioEngineering
  • Izdošanas datums: 24-Aug-2024
  • Izdevniecība: Springer Nature
  • Valoda: eng
  • ISBN-13: 9789819763702

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book pushes the limits of conventional MRI visualization methods by completely changing the medical imaging landscape and leads to innovations that will help patients and healthcare providers alike. It enhances the capabilities of MRI anatomical visualization to a level that has never before been possible for researchers and clinicians. The computational and digital algorithms developed can enable a more thorough understanding of the intricate structures found within the human body, surpassing the constraints of traditional 2D methods. The Physics-informed Neural Networks as presented can enhance three-dimensional rendering for deeper understanding of the spatial relationships and subtle abnormalities of anatomical features and sets the stage for upcoming advancements that could impact a wider range of digital heath modalities. This book opens the door to ultra-powerful digital molecular MRI powered by quantum computing that can perform calculations that would take supercomputers millions of years.

General Introduction.- Physics Informed Neural Networks PINNS.- New
Methodology and Modelling In Magnetic Resonance Imaging.- Physics informed
Neural Network for Addressing Spatial and Temporal.- Machine Learning
Model for Diagnosis of Pulmonary Arterial Hypertension.- A Convolution
Neural Network for Artificial Intelligence-Based Classification
of Alzheimers Diseases.- Physics informed Neural Networks for
Nuclear Magnetic Resonance Guided Clinical Hyperthermia.
Dr. Awojoyogbe O. B. has Ph.D. (1997) in Med. Phy. from Federal University of Technology Nigeria in collaboration with Institute of Biomed. Eng. & Med. Informatics, ETH Zurich & Univ. of Zurich. He won the 2003 Young African Math. Medal Award by African Mathematical Union. He is a professor of Physics and associate member of International Center for Theoretical Physics (ICTP), Trieste, Italy. His research field is Theory, Dynamics & Applications of Magnetic Resonance Imaging. He is a researcher of the Centre for Vaccine & Drug Development at the Federal University of Technology Minna. He served as the deputy director, Academic Planning (20082011) and the director, Academic Planning (20112015) at his University. His current research interests are the application of computational molecular magnetic resonance imaging for digital health, Quantum Artificial Intelligence (QAI)-and in particular, its subset research area Quantum Machine Learning (QML).





Dr. Dada O. M. received his B.Tech. (Physics/Electronics with First class honours) from the Fed. Univ. of Tech., Minna, Nigeria in 2006, M.Tech. (Solid State Physics) and Ph.D. (Physics) from the same university in 2010 and 2016, respectively, under the supervision of Professor O.B. Awojoyogbe. He currently holds an academic position as a senior lecturer in the Dept. of Physics of the University. He has been involved in magnetic resonance modeling of biological systems and applications of computational molecular magnetic resonance imaging for digital health, Quantum Artificial Intelligence (QAI)-and in particular, its subset research area Quantum Machine Learning (QML).