Atjaunināt sīkdatņu piekrišanu

E-grāmata: Dimension and Recurrence in Hyperbolic Dynamics

  • Formāts: PDF+DRM
  • Sērija : Progress in Mathematics 272
  • Izdošanas datums: 05-Nov-2008
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783764388829
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Progress in Mathematics 272
  • Izdošanas datums: 05-Nov-2008
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783764388829

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The main objective of this book is to give a broad uni ed introduction to the study of dimension and recurrence inhyperbolic dynamics. It includes a disc- sion of the foundations, main results, and main techniques in the rich interplay of fourmain areas of research: hyperbolic dynamics, dimension theory, multifractal analysis, and quantitative recurrence. It also gives a panorama of several selected topics of current research interest. This includes topics on irregular sets, var- tional principles, applications to number theory, measures of maximal dimension, multifractal rigidity, and quantitative recurrence. The book isdirected to researchersas well as graduate students whowish to have a global view of the theory together with a working knowledgeof its main techniques. It can also be used as a basis for graduatecourses in dimension theory of dynamical systems, multifractal analysis (together with a discussion of several special topics), and pointwise dimension and recurrence in hyperbolic dynamics. I hope that the book may serve as a fast entry point to this exciting and active ?eld of research, and also that it may lead to further developments.
Preface xiii
1 Introduction 1
1.1 Dimension and recurrence in hyperbolic dynamics
1
1.2 Contents of the book: a brief tour
3
2 Basic Notions 7
2.1 Dimension theory
7
2.2 Ergodic theory
13
2.3 Thermodynamic formalism
14
I Dimension Theory 17
3 Dimension Theory and Thermodynamic Formalism
19
3.1 Dimension theory of geometric constructions
19
3.2 Thermodynamic formalism and dimension theory
24
3.2.1 Thermodynamic formalism for symbolic dynamics
24
3.2.2 Dimension of limit sets of geometric constructions
27
3.3 Nonstationary geometric constructions
31
3.3.1 Nonadditive thermodynamic formalism
31
3.3.2 Dimension of limit sets of nonstationary constructions
35
4 Repellers and Hyperbolic Sets
41
4.1 Dimension of repellers of conformal maps
41
4.2 Hyperbolic sets and Markov partitions
49
4.2.1 Basic notions and product structure
49
4.2.2 Boundaries of Markov partitions
52
4.2.3 Product structure of Gibbs measures
55
4.3 Dimension of hyperbolic sets of conformal maps
59
4.4 Dimension for nonconformal maps: brief notes
64
5 Measures of Maximal Dimension
67
5.1 Basic notions and basic properties
67
5.2 Existence of measures of maximal dimension
70
II Multifractal Analysis: Core Theory 79
6 Multifractal Analysis of Equilibrium Measures
81
6.1 Dimension spectrum for repellers
81
6.2 Dimension spectrum for hyperbolic sets
93
7 General Concept of Multifractal Analysis
101
7.1 General concept and basic notions
101
7.2 The notion of u-dimension
103
7.3 Multifractal analysis of u-dimension
108
7.4 Domain of the spectra
111
7.5 Existence of spectra with prescribed data
113
7.6 Nondegeneracy of the spectra
120
8 Dimension of Irregular Sets
127
8.1 Introduction
127
8.2 Irregular sets and distinguishing measures
130
8.3 Existence of distinguishing measures
138
8.4 Topological Markov chains
139
8.5 Repellers
141
8.6 Hyperbolic sets
144
9 Variational Principles in Multifractal Analysis
147
9.1 Conditional variational principle
147
9.2 Topological Markov chains
156
9.3 Dimension of irregular sets
160
9.4 Repellers and mixed spectra
161
III Multifractal Analysis: Further Developments 165
10 Multidimensional Spectra and Number Theory
167
10.1 Conditional variational principle
167
10.2 Geometry of the domains
173
10.3 Regularity of the multifractal spectra
177
10.4 New phenomena in multidimensional spectra
179
10.5 Topological Markov chains
182
10.6 Finer structure of the spectrum
184
10.7 Applications to number theory
186
11 Multifractal Rigidity
191
11.1 Multifractal classification of dynamical systems
191
11.2 Entropy spectrum and topological Markov chains
193
11.2.1 Equivalence classes of functions
193
11.2.2 Locally constant functions
194
11.2.3 Multifractal rigidity for locally constant functions
197
11.2.4 Failure of multifractal rigidity
206
12 Hyperbolic Sets: Past and Future
209
12.1 A model case: the Smale horseshoe
209
12.2 Dimension spectra
210
12.3 Existence of full measures
213
12.4 Formula for the spectrum
219
12.5 Conditional variational principle
220
IV Hyperbolicity and Recurrence 221
13 Pointwise Dimension for Hyperbolic Dynamics
223
13.1 Repellers of conformal maps
223
13.1.1 Formula for the pointwise dimension
223
13.1.2 Dimension along ergodic decompositions
228
13.2 Hyperbolic sets of conformal maps
230
13.2.1 Formula for the pointwise dimension
230
13.2.2 Dimension along ergodic decompositions
234
14 Product Structure of Hyperbolic Measures
237
14.1 Nonuniform hyperbolicity
237
14.2 Dynamical systems with nonzero Lyapunov exponents
239
14.3 Product structure of hyperbolic measures
241
14.4 Product structure of measures in hyperbolic sets
244
15 Quantitative Recurrence and Dimension Theory
255
15.1 Basic notions
255
15.2 Upper bounds for recurrence rates
256
15.3 Recurrence rate and pointwise dimension
261
15.4 Product structure and recurrence
264
15.4.1 Preliminary results
264
15.4.2 Stable and unstable recurrence rates
271
15.4.3 Product structure of recurrence
281
Bibliography 285
Index 297