Atjaunināt sīkdatņu piekrišanu

E-grāmata: Dimensionality Reduction in Machine Learning

  • Formāts: PDF+DRM
  • Izdošanas datums: 04-Feb-2025
  • Izdevniecība: Elsevier Science
  • Valoda: eng
  • ISBN-13: 9780443328190
  • Formāts - PDF+DRM
  • Cena: 173,68 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 04-Feb-2025
  • Izdevniecība: Elsevier Science
  • Valoda: eng
  • ISBN-13: 9780443328190

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Dimensionality Reduction in Machine Learning covers both the mathematical and programming sides of dimension reduction algorithms, comparing them in various aspects. Part One provides an introduction to Machine Learning and the Data Life Cycle, with chapters covering the basic concepts of Machine Learning, essential mathematics for Machine Learning, and the methods and concepts of Feature Selection. Part Two covers Linear Methods for Dimension Reduction, with chapters on Principal Component Analysis and Linear Discriminant Analysis. Part Three covers Non-Linear Methods for Dimension Reduction, with chapters on Linear Local Embedding, Multi-dimensional Scaling, and t-distributed Stochastic Neighbor Embedding.Finally, Part Four covers Deep Learning Methods for Dimension Reduction, with chapters on Feature Extraction and Deep Learning, Autoencoders, and Dimensionality reduction in deep learning through group actions. With this stepwise structure and the applied code examples, readers become able to apply dimension reduction algorithms to different types of data, including tabular, text, and image data. - Provides readers with a comprehensive overview of various dimension reduction algorithms, including linear methods, non-linear methods, and deep learning methods- Covers the implementation aspects of algorithms supported by numerous code examples- Compares different algorithms so the reader can understand which algorithm is suitable for their purpose- Includes algorithm examples that are supported by a Github repository which consists of full notebooks for the programming code