Atjaunināt sīkdatņu piekrišanu

E-grāmata: Diophantine Equations and Power Integral Bases: New Computational Methods

  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Dec-2012
  • Izdevniecība: Birkhauser Boston Inc
  • Valoda: eng
  • ISBN-13: 9781461200857
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Dec-2012
  • Izdevniecība: Birkhauser Boston Inc
  • Valoda: eng
  • ISBN-13: 9781461200857
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This monograph investigates algorithms for determining power integral bases in algebraic number fields. It introduces the best-known methods for solving several types of diophantine equations using Baker-type estimates, reduction methods, and enumeration algorithms. Particular emphasis is placed on properties of number fields and new applications. The text is illustrated with several tables of various number fields, including their data on power integral bases. Good resource for solving classical types of diophantine equations. Aimed at advanced undergraduate/graduate students and researchers.

This monograph investigates algorithms for determining power integral bases in algebraic number fields. The problem has classical roots and leads to the problem of solving the corresponding index form equations that are often reduced to more classical equations, such as various types of Thue equations. The reader is introduced to the best-known methods for solving several types of diophantine equations using Baker-type estimates, reduction methods, and enumeration algorithms. These methods can be useful for other types of diophantine equations not included in the book. Several interesting properties of number fields are examined. Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations. The text is illustrated with several tables of various number fields, including their data on power integral bases. Advanced undergraduates and graduates will benefit from this exposition of methods for solving some classical types of diophantine equations. Researchers in the field will find new applications for the tools presented throughout the book.

Papildus informācija

Springer Book Archives
Preface xi
Acknowledgements xv
Introduction
1(6)
Basic concepts
1(3)
Related results
4(3)
Auxiliary Results, Tools
7(12)
Baker's method, effective finiteness theorems
8(1)
Reduction
9(3)
Davenport lemma
9(1)
The general case
10(2)
Enumeration methods
12(4)
Software, hardware
16(3)
Auxiliary Equations
19(26)
Thue equations
19(5)
Elementary estimates
20(1)
Thue's theorem
20(1)
Fast algorithm for finding ``small'' solutions
21(1)
Effective methods
22(1)
The method of Bilu and Hanrot
23(1)
Inhomogeneous Thue equations
24(4)
Elementary estimates
25(1)
Baker's method
26(1)
Reduction, test
27(1)
An analogue of the Bilu-Hanrot method
27(1)
Relative Thue equations
28(6)
Baker's method, reduction
29(2)
Enumeration
31(1)
An example
32(2)
The resolution of norm form equations
34(11)
Preliminaries
34(2)
Solving the unit equation
36(2)
Calculating the solutions of the norm form equation
38(1)
Examples
39(6)
Index Form Equations in General
45(8)
The structure of the index form
45(2)
Using resolvents
47(1)
Factorizing the index form when proper subfields exist
47(1)
Composite fields
48(5)
Coprime discriminants
48(2)
Non-coprime discriminants
50(3)
Cubic Fields
53(2)
Arbitrary cubic fields
53(1)
Simplest cubic fields
54(1)
Quartic Fields
55(24)
Algorithm for arbitrary quartic fields
56(9)
The resolvent equation
56(1)
The quartic Thue equations
57(3)
Proof of the theorem on the quartic Thue equations
60(4)
Examples
64(1)
Simplest quartic fields
65(1)
An interesting application to mixed dihedral quartic fields
66(1)
Totally complex quartic fields
67(3)
Parametric families of totally complex quartic fields
68(2)
Bicyelic biquadratic number fields
70(9)
Integral basis, index form
70(1)
The totally real case
71(3)
The totally complex case
74(1)
The field index of bicyclic biquadratic number fields
75(4)
Quintic Fields
79(18)
Algorithm for arbitrary quintic fields
79(9)
Preliminaries
80(1)
Baker's method, reduction
81(1)
Enumeration
82(2)
Examples
84(4)
Lehmer's quintics
88(9)
Integer basis, unit group
89(2)
The index form
91(1)
The index form equation
92(2)
The exceptional case
94(3)
Sextic Fields
97(16)
Sextic fields with a quadratic subfield
97(12)
Real quadratic subfield
99(1)
Totally real sextic fields with a quadratic and a cubic subfield
100(1)
Imaginary quadratic subfield
101(1)
Sextic fields with an imaginary quadratic and a real cubic subfield
101(5)
Parametric families of sextic fields with imaginary quadratic and real cubic subfields
106(3)
Sextic fields with a cubic subfield
109(1)
Sextic fields as composite fields
110(3)
A cyclic sextic field
111(1)
A non-cyclic sextic field
111(1)
The parametric family of simplest sextic fields
111(2)
Relative Power Integral Bases
113(16)
Basic concepts
113(1)
Relative cubic extensions
114(7)
Example
1. Cubic extension of a quintic field
115(1)
Example
2. Cubic extension of a sextic field
116(5)
Computational experiences
121(1)
Relative quartic extensions
121(8)
Preliminaries
121(1)
The cubic relative Thue equation
121(2)
Representing the variables as binary quadratic forms
123(1)
The quartic relative Thue equations
124(1)
An example for computing relative power integral bases in a field of degree 12 with a cubic subfield
125(4)
Some Higher Degree Fields
129(20)
Octic fields with a quadratic subfield
129(7)
Preliminaries
129(2)
The unit equation
131(1)
The inhomogeneous Thue equation
132(1)
Sieving
133(1)
An example for computing power integral bases in an octic field with a quadratic subfield
134(2)
Nonic fields with cubic subfields
136(7)
The relative Thue equations
137(1)
The unit equation over the normal closure
138(2)
The common variables
140(3)
Examples
143(1)
Some more fields of higher degree
143(6)
Power integral bases in imaginary quadratic extensions of totally real cyclic fields of prime degree
144(2)
Power integral bases in imaginary quadratic extensions of Lehmer's quintics
146(1)
One more composite field
147(2)
Tables
149(22)
Cubic fields
149(3)
Totally real cubic fields
150(2)
Complex cubic fields
152(1)
Quartic fields
152(15)
The distribution of the minimal indices
153(1)
The average behavior of the minimal indices
153(1)
Totally real cyclic quartic fields
154(1)
Monogenic mixed dihedral extensions of real quadratic fields
155(1)
Totally real bicyclic biquadratic number fields
156(4)
Totally complex bicyclic biquadratic number fields
160(1)
Some more quartic fields
161(6)
Sextic fields
167(4)
Totally real cyclic sextic fields
167(1)
Sextic fields with imaginary quadratic subfields
168(3)
References 171(10)
Author Index 181(2)
Subject Index 183