Atjaunināt sīkdatņu piekrišanu

E-grāmata: Discovering Evolution Equations with Applications: Volume 2-Stochastic Equations

(West Chester University, Pennsylvania, USA)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 90,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This text provides an introductory understanding of stochastic evolution equations for those with minimal formal training in mathematics. It develops all necessary prerequisite material in real analysis, probability theory, and functional analysis. The author presents examples of 20 different models spanning chemical kinetics, pharmacokinetics, neural networks, mathematical physics, epidemiology, environmental issues, and more. He also covers recent research areas, including functional and Sobolev-type stochastic evolution equations. More than 500 questions and exercises are included throughout, with hints at the end of each chapter.



Most existing books on evolution equations tend either to cover a particular class of equations in too much depth for beginners or focus on a very specific research direction. Thus, the field can be daunting for newcomers to the field who need access to preliminary material and behind-the-scenes detail. Taking an applications-oriented, conversational approach, Discovering Evolution Equations with Applications: Volume 2-Stochastic Equations provides an introductory understanding of stochastic evolution equations.

The text begins with hands-on introductions to the essentials of real and stochastic analysis. It then develops the theory for homogenous one-dimensional stochastic ordinary differential equations (ODEs) and extends the theory to systems of homogenous linear stochastic ODEs. The next several chapters focus on abstract homogenous linear, nonhomogenous linear, and semi-linear stochastic evolution equations. The author also addresses the case in which the forcing term is a functional before explaining Sobolev-type stochastic evolution equations. The last chapter discusses several topics of active research.

Each chapter starts with examples of various models. The author points out the similarities of the models, develops the theory involved, and then revisits the examples to reinforce the theoretical ideas in a concrete setting. He incorporates a substantial collection of questions and exercises throughout the text and provides two layers of hints for selected exercises at the end of each chapter.

Suitable for readers unfamiliar with analysis even at the undergraduate level, this book offers an engaging and accessible account of core theoretical results of stochastic evolution equations in a way that gradually builds readers’ intuition.

A Basic Analysis Toolbox. The Bare-Bone Essentials of Probability
Theory. Linear Homogenous Stochastic Evolution Equations in R. Homogenous
Linear Stochastic Evolution Equations in RN. Abstract Homogenous Linear
Stochastic Evolution Equations. Nonhomogenous Linear Stochastic Evolution
Equations. Semi-Linear Stochastic Evolution Equations. Functional Stochastic
Evolution Equations. Sobolev-Type Stochastic Evolution Equations. Beyond
Volume
2. Bibliography. Index.
Mark A. McKibben is a professor of mathematics and computer science at Goucher College. He serves as a referee for more than 30 journals and has published numerous articles in peer-reviewed journals. Dr. McKibben earned a Ph.D. in mathematics from Ohio University. His research interests include nonlinear and stochastic evolution equations.