Atjaunināt sīkdatņu piekrišanu

Distributed Computing in Big Data Analytics: Concepts, Technologies and Applications Softcover reprint of the original 1st ed. 2017 [Mīkstie vāki]

  • Formāts: Paperback / softback, 162 pages, height x width: 235x155 mm, weight: 454 g, 63 Illustrations, color; 9 Illustrations, black and white; X, 162 p. 72 illus., 63 illus. in color., 1 Paperback / softback
  • Sērija : Scalable Computing and Communications
  • Izdošanas datums: 11-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 331986713X
  • ISBN-13: 9783319867137
  • Mīkstie vāki
  • Cena: 78,14 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 91,94 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 162 pages, height x width: 235x155 mm, weight: 454 g, 63 Illustrations, color; 9 Illustrations, black and white; X, 162 p. 72 illus., 63 illus. in color., 1 Paperback / softback
  • Sērija : Scalable Computing and Communications
  • Izdošanas datums: 11-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 331986713X
  • ISBN-13: 9783319867137
However, the current literature available in big data analytics needs a holistic perspective to highlight the relation between big data analytics and distributed processing for ease of understanding and practitioner use.This book fills the literature gap by addressing key aspects of distributed processing in big data analytics.

Big data technologies are used to achieve any type of analytics in a fast and predictable way, thus enabling better human and machine level decision making. Principles of distributed computing are the keys to big data technologies and analytics. The mechanisms related to data storage, data access, data transfer, visualization and predictive modeling using distributed processing in multiple low cost machines are the key considerations that make big data analytics possible within stipulated cost and time practical for consumption by human and machines. However, the current literature available in big data analytics needs a holistic perspective to highlight the relation between big data analytics and distributed processing for ease of understanding and practitioner use.

This book fills the literature gap by addressing key aspects of distributed processing in big data analytics. The chapters tackle the essential concepts and patterns of distributed computing widely used in big data analytics. This book discusses also covers the main technologies which support distributed processing. Finally, this book provides insight into applications of big data analytics, highlighting how principles of distributed computing are used in those situations.

Practitioners and researchers alike will find this book a valuable tool for their work, helping them to select the appropriate technologies, while understanding the inherent strengths and drawbacks of those technologies.

On the role of Distributed Computing in Big Data Analytics.- Fundamental Concepts of Distributed Computing used in Big Data Analytics.- Distributed Computing Patterns useful in Big Data Analytics.- Distributed Computing Technologies in Big Data Analytics.- Security Issues & Challenges in Big Data Analytics in Distributed Environment.- Application of Big Data Analytics Application in Climate Science.- Applying Distributed Computing in Cognitive Computing.- Distributed Computing in Social Media Analytics.- Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic Knowledge Bases.