Distribution-free statistical methods enable users to make statistical inferences with minimum assumptions about the population in question. They are widely used especially in the areas of medical and psychological research.
This new edition is aimed at senior undergraduate and graduate level. It also includes a discussion of new techniques that have arisen as a result of improvements in statistical computing. Interest in estimation techniques has particularly grown and this section of the book has been expanded accordingly. Finally, Distribution-free Statistical Methods will induce more examples with actual data sets appearing in the text.
Distribution-free statistical methods enable users to make statistical inferences with minimum assumptions about the population in question. They are widely used, especially in the areas of medical and psychological research.
This new edition is aimed at senior undergraduate and graduate level. It also includes a discussion of new techniques that have arisen as a result of improvements in statistical computing. Interest in estimation techniques has particularly grown, and this section of the book has been expanded accordingly. Finally, Distribution-Free Statistical Methods includes more examples with actual data sets appearing in the text.
Recenzijas
"In summary, the book is both readable and informative. It probably covers more material than would normally be included in a standard course on distribution-free methods, but it would be a useful reference for any student following such a course." -The Statistician
1 Basic concepts in distribution-free methods -- 1.1 Introduction -- 1.2
Randomization and exact tests -- 1.3 Test statistics and estimating equations
-- 1.4 Consistency in the one parameter case -- 1.5 Confidence limits -- 1.6
Efficiency considerations in the one parameter case -- 1.6.1 Estimation --
1.6.2 Hypothesis testing -- 1.7 Estimation of standard errors -- 1.8 Multiple
samples and parameters -- 1.8.1 Introduction -- 1.8.2 Point estimation --
1.8.3 Hypothesis testing -- 1.8.4 Confidence regions -- 1.9 Normal
approximations -- 1.9.1 The need for normal and related approximations --
1.9.2 The central limit theorem -- 1.9.3 Sampling from finite populations --
1.9.4 Linear rank statistics -- 2 One-sample location problems -- 2.1
Introduction -- 2.1.1 The mean -- 2.1.2 The median -- 2.1.3 Other measures of
location -- 2.2 The median -- 2.2.1 The sign statistic -- 2.2.2 The null
distribution of the sign statistic -- 2.2.3 Hypothesis testing -- 2.2.4
Confidence limits for ų -- 2.2.5 Point estimation of ų -- 2.2.6 Estimating
the standard error of the sample median -- 2.2.7 Efficiency considerations --
2.2.8 Computational notes -- 2.3 Symmetric distributions -- 2.4 The mean
statistic -- 2.4.1 Hypothesis testing -- 2.4.2 Confidence limits -- 2.4.3
Normal approximations -- 2.4.4 Point estimation and efficiency considerations
-- 2.4.5 Computational note -- 2.5 The Wilcoxon signed rank statistic --
2.5.1 The null distribution of W -- 2.5.2 Hypothesis testing -- 2.5.3
Confidence limits -- 2.5.4 Point estimation based on W -- 2.5.5 Efficiency --
2.5.6 Estimating the variance of the Hodges-Lehmann estimate -- 2.5.7
Computational notes -- 2.6 Other rank based transformations -- 2.6.1 Scores
based directly on ranks -- 2.6.2 The null distribution of w, -- 2.6.3
Hypothesis testing -- 2.6.4 Confidence limits -- 2.6.5 Point estimation --
2.6.6 Efficiency -- 2.6.7 Optimum rank statistics -- 2.7 Robust
transformations -- 2.8 M-estimates -- 2.8.1 Hypothesis testing and confidence
limits -- 2.8.2 Point estimation and efficiency -- 2.9 M-estimation and
scaling -- 2.9.1 Hypothesis testing -- 2.9.2 Point estimation and confidence
limits -- 2.9.3 Estimating the variance of an M -estimate -- 2.10 L-estimates
-- 2.11 Ties -- 2.12 Asymmetric distributions: M-estimates -- 3 Miscellaneous
one-sample problems -- 3.1 Introduction -- 3.2 Dispersion: the interquartile
range -- 3.2.1 Symmetric F, known location -- 3.2.2 General F -- 3.3 The
sample distribution function -- 3.3.1 One-sided confidence bands for F -- 3.4
Estimation of densities -- 3.4.1 Estimation of F when some observations are
censored -- 3.4.2 The actuarial method of estimating F -- 3.4.3 The
product-limit estimate ofF -- 3.5 Paired comparisons -- 3.5.1 Signed rank
tests -- 3.5.2 Sign tests -- 4 Two-sample problems -- 4.1 Types of two-sample
problems -- 4.2 The basic randomization argument -- 4.3 Inference about
location difference -- 4.3.1 Introduction -- 4.3.2 The two-sample mean
statistic -- 4.3.3 The two-sample sign statistic -- 4.3.4 The two-sample rank
sum statistic -- 4.3.5 1\vo-sample transformed rank statistics -- 4.3.6
Robust transformations in the two-sample case -- 4.4 Multiplicative models --
4.5 Proportional hazards (Lehmann alternative) -- 4.5.1 The Wilcoxon
statistic and inference about a -- 4.5.2 The 'log-rank' test and inference
about a -- 4.5.3 Conditional likelihood and the log-rank test -- 4.5.4 The
log-rank test and censored observations -- 4.6 Dispersion alternatives --
4.6.1 A randomized exact test of dispersion -- 4.6.2 Comparing interquartile
ranges -- 4.6.3 Rank test for dispersion -- 5 Straight line regression -- 5.1
The model and some preliminaries -- 5.2 Inference about f3 only -- 5.2.1
Inference based on untransformed residuals -- 5.2.2 Rank transformation of
residuals -- 5.2.3 Sign transformation -- 5.2.4 Optimal weights for
statistics of type T -- 5.2.5 Theil's statistic, Kendall's rank correlation
-- 5.2.6 Robust transfonnations -- 5.2.7 Computational notes -- 5.3 Joint
inference about a and fJ -- 5.3.1 Median regression -- 5.3.2 Symmetric
untransfonned residuals -- 5.3.3 Symmetric residuals: signed rank method --
5.3.4 Symmetric residuals: scores based on ranks -- 5.3.5 Symmetric
residuals: robust transformations -- 6 Multiple regression and general linear
models -- 6.1 Introduction -- 6.2 Plane regression: two independent variables
-- 6.2.1 Inference about slopes: joint conditional distributiom -- ~ 6.3 Rank
statistics for slopes -- 6.4 Sign statistics for slopes -- 6.4.1 Joint
confidence regions -- 6.4.2 Point estimation -- 6.4.3 Consistency and
efficiency -- 6.4.4 Estimating the covariance matrix -- 6.5 Inference about
intercepts and slopes -- 6.5.1 Sign statistics -- 6.5.2 Symmetric residuals
-- 6.5.3 Signed ranks -- 6.5.4 Robust transforms -- 6.6 General linear models
-- 6.7 Inference about slopes only -- 6.7.1 Mean statistics -- 6.7.2 One-way
analysis of variance -- 6.7.3 Randomized blocks: two-way analysis of variance
-- 6.8 Exact inference using restricted randomization -- 6.8.1 Inference
about individual regression coefficients -- 6.8.2 Rank transfonnations --
6.8.3 Grouping and restricted randomization -- 7 Bivariate problems -- 7.1
Introduction -- 7.2 Tests of correlation -- 7.2.1 Conditional pennutation
tests: the product moment correlation coefficient -- 7.2.2 Rank
transfonnation: Spearman correlation -- 7.2.3 Sign transfonnation -- 7.2.4
Kendall's 1" and Theil's statistic -- 7.2.5 Mean square successive difference
test -- 7.2.6 Contingency tables, correlation ratios -- 7.2.7 Computational
notes -- 7.3 One-sample location -- 7.3.1 Medians -- 7.3.2 Hypothesis testing
-- 7.3.3 Confidence regions -- 7.3.4 Point estimation -- 7.3.5 Symmetric
distributions -- 7.3.6 Hypothesis testing -- 7.3.7 Confidence regions --
7.3.8 Point estimation -- 7.3.9 Symmetric distributions: transfonnation of
observations -- 7.3.10 Symmetric distributions: sign statistics -- 7.3.11
Symmetric distributions: rank statistics -- 7.3.12 Hypothesis testing and
confidence limits -- 7.3.13 Point estimation -- 7.4 Two-sample location
problems -- 7.4.1 Introduction: randomization -- 7.4.2 Medians and sign tests
-- 7.4.3 Testing a specified (Bx. By) -- 7.4.4 Confidence regions and point
estimation -- 7.4.5 Mean statistics -- 7.4.6 Hypothesis testing and
confidence limits -- 7.4.7 Point estimation -- 7.4.8 Alternative calculation
of QA -- 7.4.9 Rank statistics -- 7.4.10 Confidence regions, point estimation
-- 7.4.11 Other transfonnations of (u;, v;) -- 7.5 Three-sample location
problems -- 8 Miscellaneous complements -- 8.1 Linearization representation
-- 8.2 Asymptotic relative efficiency -- 8.3 Estimating equations and the
smoothing of statistics -- 8.4 Least squares smoothing -- 8.5 Kernel gradient
estimates -- 8.5.1 Kernel density estimation -- 8.5.2 Estimating the mean
density -- 8.6 Bootstrap estimation of standard errors -- 8.7 Conditional
standard errors -- 8.7.1 Introduction and definitions -- 8.7.2 Large sample
calculations -- References -- Index.
Johannes Maritz is professor in the Department of Statistics , University of Stellenbosch, South Africa.