Atjaunināt sīkdatņu piekrišanu

E-grāmata: Distributional Semantics

(AI Sweden), (Universitą di Pisa)
  • Formāts - PDF+DRM
  • Cena: 136,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a comprehensive foundation of distributional methods in computational modeling of meaning. It aims to build a common understanding of the theoretical and methodological foundations for students of computational linguistics, natural language processing, computer science, artificial intelligence, and cognitive science.

Distributional semantics develops theories and methods to represent the meaning of natural language expressions, with vectors encoding their statistical distribution in linguistic contexts. It is at once a theoretical model to express meaning, a practical methodology to construct semantic representations, a computational framework for acquiring meaning from language data, and a cognitive hypothesis about the role of language usage in shaping meaning. This book aims to build a common understanding of the theoretical and methodological foundations of distributional semantics. Beginning with its historical origins, the text exemplifies how the distributional approach is implemented in distributional semantic models. The main types of computational models, including modern deep learning ones, are described and evaluated, demonstrating how various types of semantic issues are addressed by those models. Open problems and challenges are also analyzed. Students and researchers in natural language processing, artificial intelligence, and cognitive science will appreciate this book.

Recenzijas

'Lenci and Sahlgren's textbook is a landmark contribution to the fast growing and increasingly important discipline of distributional semantics. They have managed to distill 60 years of diverse research on distributional semantics, from its beginning in structural and corpus linguistics and psychology, through the application of techniques from information retrieval and linear algebra, to the most recent developments driven by deep neural networks and large language models in NLP. The authors synthesize the major findings from different fields and integrate these diverse traditions into a comprehensive and coherent framework of distributional meaning. Lenci and Sahlgren's text promises to be the new standard for reference and teaching in this area.' James Pustejovsky, Brandeis University

Papildus informācija

This book provides a comprehensive foundation for the use of distributional methods in computational modeling of meaning.
Preface; Part I. Theory:
1. From usage to meaning: the foundations of distributional semantics;
2. Distributional representations; Part II. Models:
3. Distributional semantic models;
4. Matrix models;
5. Random encoding models; Part III. Practice:
7. Evaluation of distributional semantic models;
8. Distributional semantics and the lexicon; 9 Distributional semantics beyond the lexicon;
10. Conclusions and Outlook; References; Index.
Alessandro Lenci, PhD, is Professor of Linguistics and Director of the Computational Linguistics Laboratory at the University of Pisa. His research interests include distributional semantics, computational linguistics, and natural language processing. The recipient of the '10-year Test-of-Time-Award' from the Association for Computational Linguistics in 2020, he has published extensively and coordinated many projects on natural language processing and cognitive science. Magnus Sahlgren, PhD, is Head of Research for Natural Language Understanding at AI Sweden. Known primarily for research on computational models of meaning, Sahlgren's work lies at the intersection of computational linguistics, machine learning, and artificial intelligence. His doctoral dissertation, entitled 'The Word-Space Model,' was awarded the prize for the 'Most Prominent Scholarly Achievement of 2006' by the Stockholm University Faculty of Humanities.