Atjaunināt sīkdatņu piekrišanu

Divisors and Sandpiles: An Introduction to Chip-Firing [Mīkstie vāki]

  • Formāts: Paperback / softback, 329 pages, height x width: 254x178 mm, weight: 609 g
  • Sērija : Monograph Books
  • Izdošanas datums: 30-Aug-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470442183
  • ISBN-13: 9781470442187
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 101,53 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 329 pages, height x width: 254x178 mm, weight: 609 g
  • Sērija : Monograph Books
  • Izdošanas datums: 30-Aug-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470442183
  • ISBN-13: 9781470442187
Citas grāmatas par šo tēmu:
Divisors and Sandpiles provides an introduction to the combinatorial theory of chip-firing on finite graphs. Part 1 motivates the study of the discrete Laplacian by introducing the dollar game. The resulting theory of divisors on graphs runs in close parallel to the geometric theory of divisors on Riemann surfaces, and Part I culminates in a full exposition of the graph-theoretic Riemann-Roch theorem due to M. Baker and S. Norine. The text leverages the reader's understanding of the discrete story to provide a brief overview of the classical theory of Riemann surfaces.

Part 2 focuses on sandpiles, which are toy models of physical systems with dynamics controlled by the discrete Laplacian of the underlying graph. The text provides a careful introduction to the sandpile group and the abelian sandpile model, leading ultimately to L. Levine's threshold density theorem for the fixed-energy sandpile Markov chain. In a precise sense, the theory of sandpiles is dual to the theory of divisors, and there are many beautiful connections between the first two parts of the book.

Part 3 addresses various topics connecting the theory of chip-firing to other areas of mathematics, including the matrix-tree theorem, harmonic morphisms, parking functions, $M$-matrices, matroids, the Tutte polynomial, and simplicial homology. The text is suitable for advanced undergraduates and beginning graduate students.
Preface xi
Part 1 Divisors
Chapter 1 The dollar game
3(12)
1.1 An initial game
3(2)
1.2 Formal definitions
5(5)
1.3 The Picard and Jacobian groups
10(5)
Notes
12(1)
Problems for
Chapter 1
13(2)
Chapter 2 The Laplacian
15(24)
2.1 The discrete Laplacian
15(5)
2.2 Configurations and the reduced Laplacian
20(4)
2.3 Complete linear systems and convex polytopes
24(3)
2.4 Structure of the Picard group
27(12)
Notes
35(1)
Problems for
Chapter 2
36(3)
Chapter 3 Algorithms for winning
39(18)
3.1 Greed
39(3)
3.2 q-reduced divisors
42(3)
3.3 Superstable configurations
45(1)
3.4 Dhar's algorithm and efficient implementation
46(4)
3.5 The Abel-Jacobi map
50(7)
Notes
53(1)
Problems for
Chapter 3
54(3)
Chapter 4 Acyclic orientations
57(7)
4.1 Orientations and maximal unwinnables
57(2)
4.2 Dhar's algorithm revisited
59(5)
Notes
63(1)
Problems for
Chapter 4
64(1)
Chapter 5 Riemann-Roch
65(22)
5.1 The rank function
65(2)
5.2 Riemann-Roch for graphs
67(3)
5.3 The analogy with Riemann surfaces
70(8)
5.4 Alive divisors and stability
78(9)
Notes
80(2)
Problems for
Chapter 5
82(5)
Part 2 Sandpiles
Chapter 6 The sandpile group
87(28)
6.1 A first example
87(5)
6.2 Directed graphs
92(1)
6.3 Sandpile graphs
93(4)
6.4 The reduced Laplacian
97(3)
6.5 Recurrent sandpiles
100(5)
6.6 Images of sandpiles on grid graphs
105(10)
Notes
110(1)
Problems for
Chapter 6
111(4)
Chapter 7 Burning and duality
115(12)
7.1 Burning sandpiles
116(1)
7.2 Existence and uniqueness
117(2)
7.3 Superstables and recurrents
119(2)
7.4 Forbidden subconfigurations
121(2)
7.5 Dhar's burning algorithm for recurrents
123(4)
Notes
124(1)
Problems for
Chapter 7
125(2)
Chapter 8 Threshold density
127(34)
8.1 Markov chains
128(9)
8.2 The fixed-energy sandpile
137(10)
8.3 The threshold density theorem
147(14)
Notes
155(1)
Problems for
Chapter 8
156(5)
Part 3 Topics
Chapter 9 Trees
161(30)
9.1 The matrix-tree theorem
162(6)
9.2 Consequences of the matrix-tree theorem
168(3)
9.3 Tree bijections
171(20)
Notes
186(1)
Problems for
Chapter 9
187(4)
Chapter 10 Harmonic morphisms
191(20)
10.1 Morphisms between graphs
191(9)
10.2 Branched coverings of Riemann surfaces
200(2)
10.3 Household-solutions to the dollar game
202(9)
Notes
207(1)
Problems for
Chapter 10
208(3)
Chapter 11 Divisors on complete graphs
211(12)
11.1 Parking functions
211(3)
11.2 Computing ranks on complete graphs
214(9)
Problems for
Chapter 11
222(1)
Chapter 12 More about sandpiles
223(16)
12.1 Changing the sink
223(3)
12.2 Minimal number of generators for S(G)
226(7)
12.3 M-matrices
233(2)
12.4 Self-organized criticality
235(4)
Problems for
Chapter 12
238(1)
Chapter 13 Cycles and cuts
239(12)
13.1 Cycles, cuts, and the sandpile group
239(5)
13.2 Planar duality
244(7)
Problems for
Chapter 13
249(2)
Chapter 14 Matroids and the Tutte polynomial
251(22)
14.1 Matroids
251(2)
14.2 The Tutte polynomial
253(3)
14.3 2-isomorphisms
256(1)
14.4 Merino's theorem
257(3)
14.5 The Tutte polynomials of complete graphs
260(4)
14.6 The /i-vector conjecture
264(9)
Notes
268(1)
Problems for
Chapter 14
269(4)
Chapter 15 Higher dimensions
273(24)
15.1 Simplicial homology
273(7)
15.2 Higher-dimensional critical groups
280(3)
15.3 Simplicial spanning trees
283(4)
15.4 Firing rules for faces
287(10)
Notes
290(1)
Problems for
Chapter 15
291(6)
Appendices
Appendix A
297(8)
A.1 Undirected multigraphs
297(4)
A.2 Directed multigraphs
301(4)
Appendix B
305(6)
B.1 Monoids, groups, rings, and fields
305(1)
B.2 Modules
306(5)
Glossary of symbols 311(4)
Bibliography 315(4)
Index 319
Scott Corry, Lawrence University, Appleton, WI.

David Perkinson, Reed College, Portland, OR.