Preface |
|
xi | |
|
|
|
Chapter 1 The dollar game |
|
|
3 | (12) |
|
|
3 | (2) |
|
|
5 | (5) |
|
1.3 The Picard and Jacobian groups |
|
|
10 | (5) |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
15 | (24) |
|
2.1 The discrete Laplacian |
|
|
15 | (5) |
|
2.2 Configurations and the reduced Laplacian |
|
|
20 | (4) |
|
2.3 Complete linear systems and convex polytopes |
|
|
24 | (3) |
|
2.4 Structure of the Picard group |
|
|
27 | (12) |
|
|
35 | (1) |
|
|
36 | (3) |
|
Chapter 3 Algorithms for winning |
|
|
39 | (18) |
|
|
39 | (3) |
|
|
42 | (3) |
|
3.3 Superstable configurations |
|
|
45 | (1) |
|
3.4 Dhar's algorithm and efficient implementation |
|
|
46 | (4) |
|
|
50 | (7) |
|
|
53 | (1) |
|
|
54 | (3) |
|
Chapter 4 Acyclic orientations |
|
|
57 | (7) |
|
4.1 Orientations and maximal unwinnables |
|
|
57 | (2) |
|
4.2 Dhar's algorithm revisited |
|
|
59 | (5) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (22) |
|
|
65 | (2) |
|
5.2 Riemann-Roch for graphs |
|
|
67 | (3) |
|
5.3 The analogy with Riemann surfaces |
|
|
70 | (8) |
|
5.4 Alive divisors and stability |
|
|
78 | (9) |
|
|
80 | (2) |
|
|
82 | (5) |
|
|
|
Chapter 6 The sandpile group |
|
|
87 | (28) |
|
|
87 | (5) |
|
|
92 | (1) |
|
|
93 | (4) |
|
6.4 The reduced Laplacian |
|
|
97 | (3) |
|
|
100 | (5) |
|
6.6 Images of sandpiles on grid graphs |
|
|
105 | (10) |
|
|
110 | (1) |
|
|
111 | (4) |
|
Chapter 7 Burning and duality |
|
|
115 | (12) |
|
|
116 | (1) |
|
7.2 Existence and uniqueness |
|
|
117 | (2) |
|
7.3 Superstables and recurrents |
|
|
119 | (2) |
|
7.4 Forbidden subconfigurations |
|
|
121 | (2) |
|
7.5 Dhar's burning algorithm for recurrents |
|
|
123 | (4) |
|
|
124 | (1) |
|
|
125 | (2) |
|
Chapter 8 Threshold density |
|
|
127 | (34) |
|
|
128 | (9) |
|
8.2 The fixed-energy sandpile |
|
|
137 | (10) |
|
8.3 The threshold density theorem |
|
|
147 | (14) |
|
|
155 | (1) |
|
|
156 | (5) |
|
|
|
|
161 | (30) |
|
9.1 The matrix-tree theorem |
|
|
162 | (6) |
|
9.2 Consequences of the matrix-tree theorem |
|
|
168 | (3) |
|
|
171 | (20) |
|
|
186 | (1) |
|
|
187 | (4) |
|
Chapter 10 Harmonic morphisms |
|
|
191 | (20) |
|
10.1 Morphisms between graphs |
|
|
191 | (9) |
|
10.2 Branched coverings of Riemann surfaces |
|
|
200 | (2) |
|
10.3 Household-solutions to the dollar game |
|
|
202 | (9) |
|
|
207 | (1) |
|
|
208 | (3) |
|
Chapter 11 Divisors on complete graphs |
|
|
211 | (12) |
|
|
211 | (3) |
|
11.2 Computing ranks on complete graphs |
|
|
214 | (9) |
|
|
222 | (1) |
|
Chapter 12 More about sandpiles |
|
|
223 | (16) |
|
|
223 | (3) |
|
12.2 Minimal number of generators for S(G) |
|
|
226 | (7) |
|
|
233 | (2) |
|
12.4 Self-organized criticality |
|
|
235 | (4) |
|
|
238 | (1) |
|
Chapter 13 Cycles and cuts |
|
|
239 | (12) |
|
13.1 Cycles, cuts, and the sandpile group |
|
|
239 | (5) |
|
|
244 | (7) |
|
|
249 | (2) |
|
Chapter 14 Matroids and the Tutte polynomial |
|
|
251 | (22) |
|
|
251 | (2) |
|
14.2 The Tutte polynomial |
|
|
253 | (3) |
|
|
256 | (1) |
|
|
257 | (3) |
|
14.5 The Tutte polynomials of complete graphs |
|
|
260 | (4) |
|
14.6 The /i-vector conjecture |
|
|
264 | (9) |
|
|
268 | (1) |
|
|
269 | (4) |
|
Chapter 15 Higher dimensions |
|
|
273 | (24) |
|
|
273 | (7) |
|
15.2 Higher-dimensional critical groups |
|
|
280 | (3) |
|
15.3 Simplicial spanning trees |
|
|
283 | (4) |
|
15.4 Firing rules for faces |
|
|
287 | (10) |
|
|
290 | (1) |
|
|
291 | (6) |
|
|
|
|
297 | (8) |
|
A.1 Undirected multigraphs |
|
|
297 | (4) |
|
|
301 | (4) |
|
|
305 | (6) |
|
B.1 Monoids, groups, rings, and fields |
|
|
305 | (1) |
|
|
306 | (5) |
Glossary of symbols |
|
311 | (4) |
Bibliography |
|
315 | (4) |
Index |
|
319 | |