Atjaunināt sīkdatņu piekrišanu

E-grāmata: Document Analysis and Recognition - ICDAR 2023 Workshops: San Jose, CA, USA, August 24-26, 2023, Proceedings, Part II

Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 14194
  • Izdošanas datums: 14-Aug-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031415012
  • Formāts - EPUB+DRM
  • Cena: 71,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 14194
  • Izdošanas datums: 14-Aug-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031415012

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This two-volume set LNCS 14193-14194 constitutes the proceedings of International Workshops co-located with the 17th International Conference on Document Analysis and Recognition, ICDAR 2023, held in San José, CA, USA, during August 2126, 2023.





The total of 43 regular papers presented in this book were carefully selected from 60 submissions. 





Part I contains 22 regular papers that stem from the following workshops:





ICDAR 2023 Workshop on Computational Paleography (IWCP);





ICDAR 2023 Workshop on Camera-Based Document Analysis and Recognition (CBDAR);





ICDAR 2023 International Workshop on Graphics Recognition (GREC);





ICDAR 2023 Workshop on Automatically Domain-Adapted and Personalized Document Analysis (ADAPDA);





Part II contains 21 regular papers that stem from the following workshops:





ICDAR 2023 Workshop on Machine Vision and NLP for Document Analysis (VINALDO);





ICDAR 2023 International Workshop on MachineLearning (WML).





 
Typefaces and Ligatures in Printed Arabic Text: A Deep Learning-Based
OCR Perspective.- Leveraging Knowledge Graph Embeddings to Enhance Contextual
Representations for Relation Extraction.- Extracting Key-Value Pairs in
Business Documents.- Long-Range Transformer Architectures for Document
Understanding.-Pre-training transformers  for Corporate Documents
Understanding.- Transformer-Based Neural Machine Translation for Post-OCR
Error Correction in Cursive Text.- Arxiv Tables: Document Understanding
Challenge Linking Texts and Tables.- Subgraph-Induced Extraction Technique
for Information (SETI) from Administrative Documents.- Document Layout
Annotation: Database and Benchmark in the Domain of Public Affairs.- A
Clustering Approach Combining Lines and Text Detection for Table Extraction.-
Absformer: Transformer-Based Model for Unsupervised Multi-Document
Abstractive Summarization.- A Comparison of Demographic Attributes Detection
from Handwriting Based on Traditional and Deep Learning Methods.- A New
Optimization Approach to Improve an Ensemble Learning Model: Application to
Persian/Arabic Handwritten Character Recognition.- BN-DRISHTI: Bangla
Document Recognition Through Instance-level Segmentation of Handwritten Text
Images.- Text Line Detection and Recognition of Greek Polytonic Documents.- A
Comprehensive Handwritten Paragraph Text Recognition System: LexiconNet.-
Local Style Awareness of Font Images.- Fourier Feature-Based CBAM and Vision
Transformer for Text Detection in Drone Images.- Document Binarization with
Quaternionic Double Discriminator Generative Adversarial Network.-
Crosslingual Handwritten Text Generation Using GANs.- Knowledge Integration
inside Multitask Network for Analysis of Unseen ID Types.