Atjaunināt sīkdatņu piekrišanu

Document Analysis and Recognition - ICDAR 2024: 18th International Conference, Athens, Greece, August 30September 4, 2024, Proceedings, Part VI 2024 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 444 pages, height x width: 235x155 mm, 109 Illustrations, color; 53 Illustrations, black and white; XVII, 444 p. 162 illus., 109 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 14809
  • Izdošanas datums: 11-Sep-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031705513
  • ISBN-13: 9783031705519
  • Mīkstie vāki
  • Cena: 68,33 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 80,39 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 444 pages, height x width: 235x155 mm, 109 Illustrations, color; 53 Illustrations, black and white; XVII, 444 p. 162 illus., 109 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 14809
  • Izdošanas datums: 11-Sep-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031705513
  • ISBN-13: 9783031705519
This six-volume set LNCS 14804-14809 constitutes the proceedings of the 18th International Conference on Document Analysis and Recognition, ICDAR 2024, held in Athens, Greece, during August 30September 4, 2024. The total of 144 full papers presented in these proceedings were carefully selected from 263 submissions. The papers reflect topics such as: document image processing; physical and logical layout analysis; text and symbol recognition; handwriting recognition; document analysis systems; document classification; indexing and retrieval of documents; document synthesis; extracting document semantics; NLP for document understanding; office automation; graphics recognition; human document interaction; document representation modeling and much more.



Chapter The KuiSCIMA Dataset for Optical Music Recognition of Ancient Chinese Suzipu Notation is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.