Atjaunināt sīkdatņu piekrišanu

E-grāmata: Doing AI: A Business-Centric Examination of AI Culture, Goals, and Values

  • Formāts: 272 pages
  • Izdošanas datums: 14-Dec-2021
  • Izdevniecība: Matt Holt Books
  • Valoda: eng
  • ISBN-13: 9781637740071
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 13,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 272 pages
  • Izdošanas datums: 14-Dec-2021
  • Izdevniecība: Matt Holt Books
  • Valoda: eng
  • ISBN-13: 9781637740071
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Doing AI is an essential handbook for anyone interested in AI, business, and especially the overlap of the two"--

Artificial intelligence (AI) has captured our imaginations—and become a distraction. Too many leaders embrace the oversized narratives of artificial minds outpacing human intelligence and lose sight of the original problems they were meant to solve.

When businesses try to “do AI,” they place an abstract solution before problems and customers without fully considering whether it is wise, whether the hype is true, or how AI will impact their organization in the long term. Often absent is sound reasoning for why they should go down this path in the first place. 
 
Doing AI explores AI for what it actually is—and what it is not— and the problems it can truly solve. In these pages, author Richard Heimann unravels the tricky relationship between problems and high-tech solutions, exploring the pitfalls in solution-centric thinking and explaining how businesses should rethink AI in a way that aligns with their cultures, goals, and values. 
 
As the Chief AI Officer at Cybraics Inc., Richard Heimann knows from experience that AI-specific strategies are often bad for business. Doing AI is his comprehensive guide that will help readers understand AI, avoid common pitfalls, and identify beneficial applications for their companies.
 
This book is a must-read for anyone looking for clarity and practical guidance for identifying problems and effectively solving them, rather than getting sidetracked by a shiny new “solution” that doesn’t solve anything.
Foreword xi
Introduction 1(6)
PART ONE Understanding AI
Chapter 1 So, What Is Al? Seeing Al Through a Business Lens
7(28)
Chapter 2 Isn't There More Than One Kind of AI?
35(14)
Chapter 3 When All You Have Is Silver-Bullet Thinking
49(46)
Chapter 4 All We Need Is More Time
95(24)
Chapter 5 Solution Arguing: A Lesson in Culture, Conflict, and Spillovers
119(20)
Chapter 6 Human Measuring Sticks
139(18)
Chapter 7 AI Theater and Chilly Winters
157(10)
PART TWO Problems and Problem Solving with AI
Chapter 8 Not All Problems Are Created Equally
167(70)
Conclusion 237(6)
Acknowledgments 243(2)
Index 245(14)
About the Author 259
Richard Heimann is Chief AI Officer at Cybraics Inc. A fully managed cybersecurity company focusing on advanced threat detection, Cybraics was founded in 2014 and operationalized many years of machine learning research conducted at the Defense Advanced Research Projects Agency (DARPA).    Heimann is a former chief data scientist and technical fellow at L-3 National Security Solutions; former adjunct faculty at the University of Maryland, Baltimore County, where he taught graduate-level spatial econometrics and statistical reasoning; and an instructor at George Mason University, where he taught computational social science. He continues to be an advisor at George Mason Universitys DataLab and several early-stage artificial intelligence ventures. Heimann has also performed on DARPAs Nexus 7 program supporting ISAF and 82nd Airborne Division in Kandahar Afghanistan, the Naval Research Laboratory, and also consulted at the Pentagon on various AI projects and AI strategy.