Atjaunināt sīkdatņu piekrišanu

E-grāmata: Domain Adaptation and Representation Transfer: 5th MICCAI Workshop, DART 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 14293
  • Izdošanas datums: 13-Oct-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031458576
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 14293
  • Izdošanas datums: 13-Oct-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031458576

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 5th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2023, which was held in conjunction with MICCAI 2023, in October 2023. 

The 16 full papers presented in this book were carefully reviewed and selected from 32 submissions. They discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.

 

Domain adaptation of MRI scanners as an alternative to MRI
harmonization.- MultiVT: Multiple-Task Framework for Dentistry.- Black-Box
Unsupervised Domain Adaptation for Medical Image Segmentation.- PLST: A
Pseudo-Labels with a Smooth Transition Strategy for Medical Site
Adaptation.- Compositional Representation Learning for Brain Tumor
Segmentation.- Hierarchical Compositionality in Hyperbolic Space for Robust
Medical Image Segmentation.- Realistic Data Enrichment for Robust Image
Segmentation in Kidney Transplant Pathology.- Boosting Knowledge Distillation
via Random Fourier Features for Prostate Cancer Grading in Histopathology
Images.- Semi-supervised Domain Adaptation for Automatic Quality Control of
FLAIR MRIs in a Clinical Data Warehouse.- Towards Foundation Models Learned
from Anatomy in Medical Imaging via Self-Supervision.- The Performance of
Transferability Metrics does not Translate to Medical Tasks.- DGM-DR: Domain
Generalization with Mutual Information Regularized Diabetic Retinopathy
Classification.- SEDA: Self-Ensembling ViT with Defensive Distillation and
Adversarial Training for robust Chest X-rays Classification.- A Continual
Learning Approach for Cross-Domain White Blood Cell Classification.- Metadata
Improves Segmentation Through Multitasking Elicitation.- Self-Prompting Large
Vision Models for Few-Shot Medical Image Segmentation.