Atjaunināt sīkdatņu piekrišanu

Doppler Method for the Detection of Exoplanets [Hardback]

(Thüringer Landessternwarte,)
  • Formāts: Hardback, 328 pages, height x width x depth: 254x178x19 mm, weight: 787 g, Figures and images in colour and black and white
  • Sērija : AAS-IOP Astronomy
  • Izdošanas datums: 24-Dec-2019
  • Izdevniecība: Institute of Physics Publishing
  • ISBN-10: 075031687X
  • ISBN-13: 9780750316873
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 158,75 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 328 pages, height x width x depth: 254x178x19 mm, weight: 787 g, Figures and images in colour and black and white
  • Sērija : AAS-IOP Astronomy
  • Izdošanas datums: 24-Dec-2019
  • Izdevniecība: Institute of Physics Publishing
  • ISBN-10: 075031687X
  • ISBN-13: 9780750316873
Citas grāmatas par šo tēmu:
Preface xiii
Acknowledgments xv
Author biography xvi
1 Introduction
1(1)
1.1 The Dawn of Doppler Measurements
1(2)
1.2 Early Work on Stellar Radial Velocity Measurements
3(1)
1.3 Toward Precise Stellar Radial Velocity Measurements
4(2)
1.4 The Early Hints of Exoplanets
6(2)
1.5 The 51 Peg Revolution
8(2)
1.6 The Doppler Method
10(2)
References
12
2 The Instruments for Doppler Measurements
1(1)
2.1 Echelle Spectrographs
1(2)
2.1.1 Gratings
3(2)
2.1.2 Cross-dispersers
5(1)
2.1.3 Dispersion and Spectral Resolution
6(4)
2.1.4 The Blaze Function
10(1)
2.1.5 Scattered Light
11(1)
2.2 Fourier Transform Spectrometers
12(2)
2.3 Charge-coupled Device Detectors
14(1)
2.3.1 The Structure and Operation of a CCD
15(2)
2.3.2 Quantum Efficiency
17(1)
2.3.3 Bias Level
18(2)
2.3.4 Gain
20(1)
2.3.5 Readout Noise and Dark Current
21(1)
2.3.6 Charge Transfer Efficiency
22(1)
2.3.7 Linearity
22(1)
2.3.8 Flat Fielding
23(1)
2.3.9 Saturation and Blooming
23(2)
2.3.10 Fringing
25(1)
2.3.11 Persistence
25(2)
References
27
3 Factors Influencing the Radial Velocity Measurement
1(1)
3.1 Instrumental Characteristics
2(6)
3.1.1 Wavelength Coverage
2(1)
3.1.2 Signal-to-noise Ratio
3(2)
3.1.3 Resolving Power
5(3)
3.2 Stellar Characteristics
8(6)
3.2.1 Stellar Rotational Velocity
8(3)
3.2.2 Spectral Line Strength
11(2)
3.2.3 Number Density of Spectral Lines
13(1)
3.3 RV Precision across Spectral Types
14(2)
3.3.1 Radial Velocities of High-mass Stars
16(2)
3.3.2 Radial Velocities of Low-mass Stars
18(2)
References
20
4 Simultaneous Wavelength Calibration
1(1)
4.1 Instrumental Shifts
2(4)
4.2 Hollow Cathode Lamps
6(7)
4.2.1 Th--Ar
8(5)
4.2.2 HCL in the Infrared
13(1)
4.3 The Telluric Method
13(2)
4.4 Gas Absorption Cells
15(8)
4.4.1 The Hydrogen Fluoride Cell
16(2)
4.4.2 The Iodine Absorption Cell
18(3)
4.4.3 Absorption Cells at Infrared Wavelengths
21(2)
4.5 Laser Frequency Combs
23(3)
4.6 Fabry--Perot Etalons
26(3)
4.7 The RV Precision of Modern Spectrographs
29(5)
References
34
5 Calculating the Doppler Shifts: The Cross-correlation Method
1(1)
5.1 Mathematical Formalism
1(2)
5.2 Choice of Template
3(5)
5.2.1 Standard Stars
4(1)
5.2.2 Synthetic Masks
4(1)
5.2.3 Self-templates
5(2)
5.2.4 Mismatched Template and Stellar Spectra
7(1)
5.3 CCF Detection of Spectroscopic Binaries
8(3)
5.4 Fahlman--Glaspey Shift Detection
11(2)
References
13
6 The Iodine Cell Method
1(1)
6.1 The Instrumental Profile
1(3)
6.2 Modeling the IP with the Iodine Cell Method
4(3)
6.3 Influence of Changes in the IP
7(2)
6.4 Ingredients for the Iodine Cell Method
9(3)
6.4.1 The Fiducial
9(1)
6.4.2 The Template
10(2)
6.5 Calculation of the Doppler Shift
12(1)
6.6 Construction of an Iodine Cell
13(2)
6.7 Closing Remarks
15(1)
References
16
7 Frequency Analysis of Time Series Data
1(1)
7.1 Introduction
1(1)
7.2 The Discrete Fourier Transform
2(4)
7.2.1 Convolution
3(1)
7.2.2 Visualizing Fourier Transforms
4(2)
7.3 The Lomb--Scargle Periodogram
6(1)
7.4 The Generalized Lomb--Scargle Periodogram
7(2)
7.5 The Bayesian Generalized Lomb--Scargle Periodogram
9(2)
7.6 Comparison of the Types of Periodograms
11(1)
7.7 The Spectral Window
12(4)
7.8 The Nyquist Frequency and Aliasing
16(4)
7.9 Frequency Resolution
20(2)
7.10 Assessing the Statistical Significance
22(6)
7.10.1 Using the Lomb--Scargle Periodogram
23(1)
7.10.2 Using the Fourier Amplitude Spectrum
24(2)
7.10.3 Bootstrap Randomization
26(2)
7.11 Finding Multiperiodic Signals in Your Data
28(4)
7.12 Required Number of Observations
32(2)
7.13 Frequency versus Period
34(2)
References
36
8 Keplerian Orbits
1(1)
8.1 Orbital Parameters
1(2)
8.2 Describing the Orbital Motion
3(1)
8.3 The Radial Velocity Curve
4(2)
8.4 The Mass Function
6(1)
8.5 Mean Orbital Inclination
7(1)
8.6 Eccentric Orbits
8(9)
8.6.1 Observing Biases Caused by Eccentric Orbits
9(2)
8.6.2 Eccentric Orbits in the Fourier Domain
11(2)
8.6.3 Keplerian Periodograms
13(4)
8.7 Calculating Keplerian Orbits
17(3)
8.7.1 Transiting Planets
17(3)
8.8 Dynamical Effects
20(3)
8.8.1 Dynamical Stability
20(1)
8.8.2 Planet Interactions
21(2)
8.9 Barycentric Corrections
23(1)
References
24
9 Avoiding False Planets: Rotational Modulation
1(1)
9.1 Introduction
1(2)
9.2 Spots
3(5)
9.3 Plage and Faculae
8(1)
9.4 Granulation and Convective Blueshift
8(5)
9.4.1 The Sun Viewed as a Star
11(1)
9.4.2 Velocity Spots
12(1)
9.5 Testing for Rotational Modulation
13(1)
9.5.1 Determining the Rotation Period of the Star
14(2)
9.5.2 Evolution of Statistical Significance
16(4)
9.5.3 Amplitude Variations
20(4)
References
24
10 Avoiding False Planets: Indicators of Stellar Activity
1(1)
10.1 Activity Indicators
1(6)
10.1.1 Ca II H & K
2(2)
10.1.2 Hα
4(1)
10.1.3 Na D
5(1)
10.1.4 TiO Bands
6(1)
10.1.5 Hydroxyl 1.563 μm Absorption
7(1)
10.2 Line Depth Ratios
7(2)
10.3 Spectral Line Shapes
9(8)
10.3.1 Line Bisectors
10(7)
10.3.2 Line Widths
17(1)
10.4 Chromatic RV Variations
17(3)
10.5 Use of Individual Lines
20(5)
10.5.1 Radial Velocities
21(4)
10.5.2 Convective Blueshifts versus Line Strength
25(1)
10.6 Radial Velocity Jitter
25(10)
10.6.1 RV Jitter and Orbit Fitting
26(1)
10.6.2 Sources of Jitter
26(1)
10.6.3 Stellar Oscillations
27(4)
10.6.4 Activity Jitter
31(4)
10.7 Activity Cycles
35(2)
10.8 Concluding Remarks
37(1)
References
37
11 Dealing with Stellar Activity
1(1)
11.1 Fourier Filtering
1(6)
11.1.1 The Pitfalls of Prewhitening
7(1)
11.2 High Pass Filtering
7(8)
11.2.1 Local Trend Fitting
8(4)
11.2.2 Floating Chunk Offset
12(3)
11.3 Gaussian Processes
15(3)
11.4 A Short Comparison of Filtering Methods
18(1)
11.5 The RV Challenge
19(2)
11.6 Toward Earth Analogs
21(2)
References
23
12 Contributions to the Error Budget
1(1)
12.1 Guiding Errors
1(3)
12.2 Changes in the Instrumental Setup
4(3)
12.3 Detector Errors
7(5)
12.3.1 Electronic Noise Pickup
7(1)
12.3.2 CCD Inhomogeneities and Discontinuities
8(2)
12.3.3 Charge Transfer Effects
10(2)
12.4 Errors in the Barycentric Correction
12(5)
12.4.1 Inaccurate Time of Observations
12(2)
12.4.2 Inaccurate Telescope Coordinates
14(1)
12.4.3 Inaccurate Stellar Positions
15(1)
12.4.4 Differential Barycentric Motion
15(2)
12.5 The Secular Acceleration
17(1)
12.6 Telluric Line Contamination
18(3)
12.7 Moonlight Contamination
21(2)
References
23
13 The Rossiter--McLaughlin Effect
1
13.1 Introduction
1(1)
13.2 Origin of the Rossiter--McLaughlin Effect
2(3)
13.3 The Rossiter--McLaughlin Effect in Exoplanets
5(3)
13.3.1 The Radial Velocity Amplitude
5(2)
13.3.2 The Spin--Orbit Alignment
7(1)
13.4 Spin Axis of the Star
8
References
13