Preface |
|
xiii | |
Acknowledgments |
|
xv | |
Author biography |
|
xvi | |
|
|
1 | (1) |
|
1.1 The Dawn of Doppler Measurements |
|
|
1 | (2) |
|
1.2 Early Work on Stellar Radial Velocity Measurements |
|
|
3 | (1) |
|
1.3 Toward Precise Stellar Radial Velocity Measurements |
|
|
4 | (2) |
|
1.4 The Early Hints of Exoplanets |
|
|
6 | (2) |
|
1.5 The 51 Peg Revolution |
|
|
8 | (2) |
|
|
10 | (2) |
|
|
12 | |
|
2 The Instruments for Doppler Measurements |
|
|
1 | (1) |
|
2.1 Echelle Spectrographs |
|
|
1 | (2) |
|
|
3 | (2) |
|
|
5 | (1) |
|
2.1.3 Dispersion and Spectral Resolution |
|
|
6 | (4) |
|
|
10 | (1) |
|
|
11 | (1) |
|
2.2 Fourier Transform Spectrometers |
|
|
12 | (2) |
|
2.3 Charge-coupled Device Detectors |
|
|
14 | (1) |
|
2.3.1 The Structure and Operation of a CCD |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
18 | (2) |
|
|
20 | (1) |
|
2.3.5 Readout Noise and Dark Current |
|
|
21 | (1) |
|
2.3.6 Charge Transfer Efficiency |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
2.3.9 Saturation and Blooming |
|
|
23 | (2) |
|
|
25 | (1) |
|
|
25 | (2) |
|
|
27 | |
|
3 Factors Influencing the Radial Velocity Measurement |
|
|
1 | (1) |
|
3.1 Instrumental Characteristics |
|
|
2 | (6) |
|
3.1.1 Wavelength Coverage |
|
|
2 | (1) |
|
3.1.2 Signal-to-noise Ratio |
|
|
3 | (2) |
|
|
5 | (3) |
|
3.2 Stellar Characteristics |
|
|
8 | (6) |
|
3.2.1 Stellar Rotational Velocity |
|
|
8 | (3) |
|
3.2.2 Spectral Line Strength |
|
|
11 | (2) |
|
3.2.3 Number Density of Spectral Lines |
|
|
13 | (1) |
|
3.3 RV Precision across Spectral Types |
|
|
14 | (2) |
|
3.3.1 Radial Velocities of High-mass Stars |
|
|
16 | (2) |
|
3.3.2 Radial Velocities of Low-mass Stars |
|
|
18 | (2) |
|
|
20 | |
|
4 Simultaneous Wavelength Calibration |
|
|
1 | (1) |
|
|
2 | (4) |
|
|
6 | (7) |
|
|
8 | (5) |
|
4.2.2 HCL in the Infrared |
|
|
13 | (1) |
|
|
13 | (2) |
|
|
15 | (8) |
|
4.4.1 The Hydrogen Fluoride Cell |
|
|
16 | (2) |
|
4.4.2 The Iodine Absorption Cell |
|
|
18 | (3) |
|
4.4.3 Absorption Cells at Infrared Wavelengths |
|
|
21 | (2) |
|
4.5 Laser Frequency Combs |
|
|
23 | (3) |
|
|
26 | (3) |
|
4.7 The RV Precision of Modern Spectrographs |
|
|
29 | (5) |
|
|
34 | |
|
5 Calculating the Doppler Shifts: The Cross-correlation Method |
|
|
1 | (1) |
|
5.1 Mathematical Formalism |
|
|
1 | (2) |
|
|
3 | (5) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (2) |
|
5.2.4 Mismatched Template and Stellar Spectra |
|
|
7 | (1) |
|
5.3 CCF Detection of Spectroscopic Binaries |
|
|
8 | (3) |
|
5.4 Fahlman--Glaspey Shift Detection |
|
|
11 | (2) |
|
|
13 | |
|
|
1 | (1) |
|
6.1 The Instrumental Profile |
|
|
1 | (3) |
|
6.2 Modeling the IP with the Iodine Cell Method |
|
|
4 | (3) |
|
6.3 Influence of Changes in the IP |
|
|
7 | (2) |
|
6.4 Ingredients for the Iodine Cell Method |
|
|
9 | (3) |
|
|
9 | (1) |
|
|
10 | (2) |
|
6.5 Calculation of the Doppler Shift |
|
|
12 | (1) |
|
6.6 Construction of an Iodine Cell |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
16 | |
|
7 Frequency Analysis of Time Series Data |
|
|
1 | (1) |
|
|
1 | (1) |
|
7.2 The Discrete Fourier Transform |
|
|
2 | (4) |
|
|
3 | (1) |
|
7.2.2 Visualizing Fourier Transforms |
|
|
4 | (2) |
|
7.3 The Lomb--Scargle Periodogram |
|
|
6 | (1) |
|
7.4 The Generalized Lomb--Scargle Periodogram |
|
|
7 | (2) |
|
7.5 The Bayesian Generalized Lomb--Scargle Periodogram |
|
|
9 | (2) |
|
7.6 Comparison of the Types of Periodograms |
|
|
11 | (1) |
|
|
12 | (4) |
|
7.8 The Nyquist Frequency and Aliasing |
|
|
16 | (4) |
|
|
20 | (2) |
|
7.10 Assessing the Statistical Significance |
|
|
22 | (6) |
|
7.10.1 Using the Lomb--Scargle Periodogram |
|
|
23 | (1) |
|
7.10.2 Using the Fourier Amplitude Spectrum |
|
|
24 | (2) |
|
7.10.3 Bootstrap Randomization |
|
|
26 | (2) |
|
7.11 Finding Multiperiodic Signals in Your Data |
|
|
28 | (4) |
|
7.12 Required Number of Observations |
|
|
32 | (2) |
|
7.13 Frequency versus Period |
|
|
34 | (2) |
|
|
36 | |
|
|
1 | (1) |
|
|
1 | (2) |
|
8.2 Describing the Orbital Motion |
|
|
3 | (1) |
|
8.3 The Radial Velocity Curve |
|
|
4 | (2) |
|
|
6 | (1) |
|
8.5 Mean Orbital Inclination |
|
|
7 | (1) |
|
|
8 | (9) |
|
8.6.1 Observing Biases Caused by Eccentric Orbits |
|
|
9 | (2) |
|
8.6.2 Eccentric Orbits in the Fourier Domain |
|
|
11 | (2) |
|
8.6.3 Keplerian Periodograms |
|
|
13 | (4) |
|
8.7 Calculating Keplerian Orbits |
|
|
17 | (3) |
|
|
17 | (3) |
|
|
20 | (3) |
|
8.8.1 Dynamical Stability |
|
|
20 | (1) |
|
8.8.2 Planet Interactions |
|
|
21 | (2) |
|
8.9 Barycentric Corrections |
|
|
23 | (1) |
|
|
24 | |
|
9 Avoiding False Planets: Rotational Modulation |
|
|
1 | (1) |
|
|
1 | (2) |
|
|
3 | (5) |
|
|
8 | (1) |
|
9.4 Granulation and Convective Blueshift |
|
|
8 | (5) |
|
9.4.1 The Sun Viewed as a Star |
|
|
11 | (1) |
|
|
12 | (1) |
|
9.5 Testing for Rotational Modulation |
|
|
13 | (1) |
|
9.5.1 Determining the Rotation Period of the Star |
|
|
14 | (2) |
|
9.5.2 Evolution of Statistical Significance |
|
|
16 | (4) |
|
9.5.3 Amplitude Variations |
|
|
20 | (4) |
|
|
24 | |
|
10 Avoiding False Planets: Indicators of Stellar Activity |
|
|
1 | (1) |
|
|
1 | (6) |
|
|
2 | (2) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
10.1.5 Hydroxyl 1.563 μm Absorption |
|
|
7 | (1) |
|
|
7 | (2) |
|
10.3 Spectral Line Shapes |
|
|
9 | (8) |
|
|
10 | (7) |
|
|
17 | (1) |
|
10.4 Chromatic RV Variations |
|
|
17 | (3) |
|
10.5 Use of Individual Lines |
|
|
20 | (5) |
|
|
21 | (4) |
|
10.5.2 Convective Blueshifts versus Line Strength |
|
|
25 | (1) |
|
10.6 Radial Velocity Jitter |
|
|
25 | (10) |
|
10.6.1 RV Jitter and Orbit Fitting |
|
|
26 | (1) |
|
|
26 | (1) |
|
10.6.3 Stellar Oscillations |
|
|
27 | (4) |
|
|
31 | (4) |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
37 | |
|
11 Dealing with Stellar Activity |
|
|
1 | (1) |
|
|
1 | (6) |
|
11.1.1 The Pitfalls of Prewhitening |
|
|
7 | (1) |
|
|
7 | (8) |
|
11.2.1 Local Trend Fitting |
|
|
8 | (4) |
|
11.2.2 Floating Chunk Offset |
|
|
12 | (3) |
|
|
15 | (3) |
|
11.4 A Short Comparison of Filtering Methods |
|
|
18 | (1) |
|
|
19 | (2) |
|
11.6 Toward Earth Analogs |
|
|
21 | (2) |
|
|
23 | |
|
12 Contributions to the Error Budget |
|
|
1 | (1) |
|
|
1 | (3) |
|
12.2 Changes in the Instrumental Setup |
|
|
4 | (3) |
|
|
7 | (5) |
|
12.3.1 Electronic Noise Pickup |
|
|
7 | (1) |
|
12.3.2 CCD Inhomogeneities and Discontinuities |
|
|
8 | (2) |
|
12.3.3 Charge Transfer Effects |
|
|
10 | (2) |
|
12.4 Errors in the Barycentric Correction |
|
|
12 | (5) |
|
12.4.1 Inaccurate Time of Observations |
|
|
12 | (2) |
|
12.4.2 Inaccurate Telescope Coordinates |
|
|
14 | (1) |
|
12.4.3 Inaccurate Stellar Positions |
|
|
15 | (1) |
|
12.4.4 Differential Barycentric Motion |
|
|
15 | (2) |
|
12.5 The Secular Acceleration |
|
|
17 | (1) |
|
12.6 Telluric Line Contamination |
|
|
18 | (3) |
|
12.7 Moonlight Contamination |
|
|
21 | (2) |
|
|
23 | |
|
13 The Rossiter--McLaughlin Effect |
|
|
1 | |
|
|
1 | (1) |
|
13.2 Origin of the Rossiter--McLaughlin Effect |
|
|
2 | (3) |
|
13.3 The Rossiter--McLaughlin Effect in Exoplanets |
|
|
5 | (3) |
|
13.3.1 The Radial Velocity Amplitude |
|
|
5 | (2) |
|
13.3.2 The Spin--Orbit Alignment |
|
|
7 | (1) |
|
13.4 Spin Axis of the Star |
|
|
8 | |
|
|
13 | |