Atjaunināt sīkdatņu piekrišanu

E-grāmata: Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation

  • Formāts - EPUB+DRM
  • Cena: 145,08 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book will be focused on the modeling and control of the DFIM based wind turbines. In the first part of the book, the mathematical description of different basic dynamic models of the DFIM will be carried out. It will be accompanied by a detailed steady-state analysis of the machine. After that, a more sophisticated model of the machine that considers grid disturbances, such as voltage dips and unbalances will be also studied.  The second part of the book surveys the most relevant control strategies used for the DFIM when it operates at the wind energy generation application. The control techniques studied, range from standard solutions used by wind turbine manufacturers, to the last developments oriented to improve the behavior of high power wind turbines, as well as control and hardware based solutions to address different faulty scenarios of the grid. In addition, the standalone DFIM generation system will be also analyzed.
Preface xiii
1 Introduction to A Wind Energy Generation System
1(86)
1.1 Introduction
1(1)
1.2 Basic Concepts of a Fixed Speed Wind Turbine (FSWT)
2(8)
1.2.1 Basic Wind Turbine Description
2(3)
1.2.2 Power Control of Wind Turbines
5(2)
1.2.3 Wind Turbine Aerodynamics
7(2)
1.2.4 Example of a Commercial Wind Turbine
9(1)
1.3 Variable Speed Wind Turbines (VSWTs)
10(15)
1.3.1 Modeling of Variable Speed Wind Turbine
11(4)
1.3.2 Control of a Variable Speed Wind Turbine
15(7)
1.3.3 Electrical System of a Variable Speed Wind Turbine
22(3)
1.4 Wind Energy Generation System Based on DFIM VSWT
25(14)
1.4.1 Electrical Configuration of a VSWT Based on the DFIM
25(8)
1.4.2 Electrical Configuration of a Wind Farm
33(1)
1.4.3 WEGS Control Structure
34(5)
1.5 Grid Code Requirements
39(7)
1.5.1 Frequency and Voltage Operating Range
40(1)
1.5.2 Reactive Power and Voltage Control Capability
41(2)
1.5.3 Power Control
43(2)
1.5.4 Power System Stabilizer Function
45(1)
1.5.5 Low Voltage Ride Through (LVRT)
46(1)
1.6 Voltage Dips and LVRT
46(11)
1.6.1 Electric Power System
47(3)
1.6.2 Voltage Dips
50(5)
1.6.3 Spanish Verification Procedure
55(2)
1.7 VSWT Based on DFIM Manufacturers
57(26)
1.7.1 Industrial Solutions: Wind Turbine Manufacturers
57(15)
1.7.2 Modeling a 2.4 MW Wind Turbine
72(7)
1.7.3 Steady State Generator and Power Converter Sizing
79(4)
1.8 Introduction to the Next
Chapters
83(2)
Bibliography
85(2)
2 Back-to-Back Power Electronic Converter
87(68)
2.1 Introduction
87(1)
2.2 Back-to-Back Converter based on Two-Level VSC Topology
88(26)
2.2.1 Grid Side System
89(7)
2.2.2 Rotor Side Converter and dvldt Filter
96(3)
2.2.3 DC Link
99(2)
2.2.4 Pulse Generation of the Controlled Switches
101(13)
2.3 Multilevel VSC Topologies
114(19)
2.3.1 Three-Level Neutral Point Clamped VSC Topology (3L-NPC)
116(17)
2.4 Control of Grid Side System
133(19)
2.4.1 Steady State Model of the Grid Side System
133(6)
2.4.2 Dynamic Modeling of the Grid Side System
139(4)
2.4.3 Vector Control of the Grid Side System
143(9)
2.5 Summary
152(1)
References
153(2)
3 Steady State of the Doubly Fed Induction Machine
155(54)
3.1 Introduction
155(1)
3.2 Equivalent Electric Circuit at Steady State
156(9)
3.2.1 Basic Concepts on DFIM
156(2)
3.2.2 Steady State Equivalent Circuit
158(5)
3.2.3 Phasor Diagram
163(2)
3.3 Operation Modes Attending to Speed and Power Flows
165(8)
3.3.1 Basic Active Power Relations
165(3)
3.3.2 Torque Expressions
168(2)
3.3.3 Reactive Power Expressions
170(1)
3.3.4 Approximated Relations Between Active Powers, Torque, and Speeds
170(1)
3.3.5 Four Quadrant Modes of Operation
171(2)
3.4 Per Unit Transformation
173(11)
3.4.1 Base Values
175(1)
3.4.2 Per Unit Transformation of Magnitudes and Parameters
176(1)
3.4.3 Steady State Equations of the DFIM in p.u
177(2)
3.4.4 Example 3.1: Parameters of a 2 MW DFIM
179(1)
3.4.5 Example 3.2: Parameters of Different Power DFIM
180(1)
3.4.6 Example 3.3: Phasor Diagram of a 2 MW DFIM and p.u. Analysis
181(3)
3.5 Steady State Curves: Performance Evaluation
184(18)
3.5.1 Rotor Voltage Variation: Frequency, Amplitude, and Phase Shift
185(7)
3.5.2 Rotor Voltage Variation: Constant Voltage-Frequency (V-F) Ratio
192(3)
3.5.3 Rotor Voltage Variation: Control of Stator Reactive Power and Torque
195(7)
3.6 Design Requirements for the DFIM in Wind Energy Generation Applications
202(5)
3.7 Summary
207(1)
References
208(1)
4 Dynamic Modeling of the Doubly Fed Induction Machine
209(32)
4.1 Introduction
209(1)
4.2 Dynamic Modeling of the DFIM
210(28)
4.2.1 αβ Model
212(2)
4.2.2 dq Model
214(2)
4.2.3 State-Space Representation of αβ Model
216(13)
4.2.4 State-Space Representation of dq Model
229(5)
4.2.5 Relation Between the Steady State Model and the Dynamic Model
234(4)
4.3 Summary
238(1)
References
238(3)
5 Testing the DFIM
241(24)
5.1 Introduction
241(1)
5.2 Off-Line Estimation of DFIM Model Parameters
242(20)
5.2.1 Considerations About the Model Parameters of the DFIM
243(2)
5.2.2 Stator and Rotor Resistances Estimation by VSC
245(5)
5.2.3 Leakage Inductances Estimation by VSC
250(6)
5.2.4 Magnetizing Inductance and Iron Losses Estimation with No-Load Test by VSC
256(6)
5.3 Summary
262(1)
References
262(3)
6 Analysis of the DFIM Under Voltage Dips
265(38)
6.1 Introduction
265(1)
6.2 Electromagnetic Force Induced in the Rotor
266(1)
6.3 Normal Operation
267(1)
6.4 Three-Phase Voltage Dips
268(10)
6.4.1 Total Voltage Dip, Rotor Open-Circuited
268(5)
6.4.2 Partial Voltage Dip, Rotor Open-Circuited
273(5)
6.5 Asymmetrical Voltage Dips
278(12)
6.5.1 Fundamentals of the Symmetrical Component Method
278(3)
6.5.2 Symmetrical Components Applied to the DFIM
281(2)
6.5.3 Single-Phase Dip
283(3)
6.5.4 Phase-to-Phase Dip
286(4)
6.6 Influence of the Rotor Currents
290(7)
6.6.1 Influence of the Rotor Current in a Total Three-Phase Voltage Dip
291(3)
6.6.2 Rotor Voltage in a General Case
294(3)
6.7 DFIM Equivalent Model During Voltage Dips
297(3)
6.7.1 Equivalent Model in Case of Linearity
297(2)
6.7.2 Equivalent Model in Case of Nonlinearity
299(1)
6.7.3 Model of the Grid
300(1)
6.8 Summary
300(1)
References
301(2)
7 Vector Control Strategies for Grid-Connected DFIM Wind Turbines
303(60)
7.1 Introduction
303(1)
7.2 Vector Control
304(10)
7.2.1 Calculation of the Current References
305(2)
7.2.2 Limitation of the Current References
307(1)
7.2.3 Current Control Loops
308(3)
7.2.4 Reference Frame Orientations
311(2)
7.2.5 Complete Control System
313(1)
7.3 Small Signal Stability of the Vector Control
314(13)
7.3.1 Influence of the Reference Frame Orientation
314(6)
7.3.2 Influence of the Tuning of the Regulators
320(7)
7.4 Vector Control Behavior Under Unbalanced Conditions
327(4)
7.4.1 Reference Frame Orientation
328(1)
7.4.2 Saturation of the Rotor Converter
328(1)
7.4.3 Oscillations in the Stator Current and in the Electromagnetic Torque
328(3)
7.5 Vector Control Behavior Under Voltage Dips
331(9)
7.5.1 Small Dips
333(3)
7.5.2 Severe Dips
336(4)
7.6 Control Solutions for Grid Disturbances
340(18)
7.6.1 Demagnetizing Current
340(6)
7.6.2 Dual Control Techniques
346(12)
7.7 Summary
358(2)
References
360(3)
8 Direct Control of the Doubly Fed Induction Machine
363(116)
8.1 Introduction
363(1)
8.2 Direct Torque Control (DTC) of the Doubly Fed Induction Machine
364(23)
8.2.1 Basic Control Principle
365(6)
8.2.2 Control Block Diagram
371(6)
8.2.3 Example 8.1: Direct Torque Control of a 2 MW DFIM
377(2)
8.2.4 Study of Rotor Voltage Vector Effect in the DFIM
379(5)
8.2.5 Example 8.2: Spectrum Analysis in Direct Torque Control of a 2 MW DFIM
384(2)
8.2.6 Rotor Flux Amplitude Reference Generation
386(1)
8.3 Direct Power Control (DPC) of the Doubly Fed Induction Machine
387(12)
8.3.1 Basic Control Principle
387(3)
8.3.2 Control Block Diagram
390(5)
8.3.3 Example 8.3: Direct Power Control of a 2 MW DFIM
395(1)
8.3.4 Study of Rotor Voltage Vector Effect in the DFIM
395(4)
8.4 Predictive Direct Torque Control (P-DTC) of the Doubly Fed Induction Machine at Constant Switching Frequency
399(17)
8.4.1 Basic Control Principle
399(3)
8.4.2 Control Block Diagram
402(9)
8.4.3 Example 8.4: Predictive Direct Torque Control of 15 kW and 2 MW DFIMs at 800 Hz Constant Switching Frequency
411(4)
8.4.4 Example 8.5: Predictive Direct Torque Control of a 15kW DFIM at 4 kHz Constant Switching Frequency
415(1)
8.5 Predictive Direct Power Control (P-DPC) of the Doubly Fed Induction Machine at Constant Switching Frequency
416(9)
8.5.1 Basic Control Principle
417(2)
8.5.2 Control Block Diagram
419(5)
8.5.3 Example 8.6: Predictive Direct Power Control of a 15 kW DFIM at 1 kHz Constant Switching Frequency
424(1)
8.6 Multilevel Converter Based Predictive Direct Power and Direct Torque Control of the Doubly Fed Induction Machine at Constant Switching Frequency
425(26)
8.6.1 Introduction
425(3)
8.6.2 Three-Level NPC VSC Based DPC of the DFIM
428(19)
8.6.3 Three-Level NPC VSC Based DTC of the DFIM
447(4)
8.7 Control Solutions for Grid Voltage Disturbances, Based on Direct Control Techniques
451(22)
8.7.1 Introduction
451(1)
8.7.2 Control for Unbalanced Voltage Based on DPC
452(8)
8.7.3 Control for Unbalanced Voltage Based on DTC
460(7)
8.7.4 Control for Voltage Dips Based on DTC
467(6)
8.8 Summary
473(1)
References
474(5)
9 Hardware Solutions for LVRT
479(22)
9.1 Introduction
479(1)
9.2 Grid Codes Related to LVRT
479(2)
9.3 Crowbar
481(11)
9.3.1 Design of an Active Crowbar
484(2)
9.3.2 Behavior Under Three-Phase Dips
486(2)
9.3.3 Behavior Under Asymmetrical Dips
488(2)
9.3.4 Combination of Crowbar and Software Solutions
490(2)
9.4 Braking Chopper
492(3)
9.4.1 Performance of a Braking Chopper Installed Alone
492(1)
9.4.2 Combination of Crowbar and Braking Chopper
493(2)
9.5 Other Protection Techniques
495(2)
9.5.1 Replacement Loads
495(1)
9.5.2 Wind Farm Solutions
496(1)
9.6 Summary
497(1)
References
498(3)
10 Complementary Control Issues: Estimator Structures and Start-Up of Grid-Connected DFIM
501(36)
10.1 Introduction
501(1)
10.2 Estimator and Observer Structures
502(10)
10.2.1 General Considerations
502(1)
10.2.2 Stator Active and Reactive Power Estimation for Rotor Side DPC
503(1)
10.2.3 Stator Flux Estimator from Stator Voltage for Rotor Side Vector Control
503(3)
10.2.4 Stator Flux Synchronization from Stator Voltage for Rotor Side Vector Control
506(1)
10.2.5 Stator and Rotor Fluxes Estimation for Rotor Side DPC, DTC, and Vector Control
507(1)
10.2.6 Stator and Rotor Flux Full Order Observer
508(4)
10.3 Start-up of the Doubly Fed Induction Machine Based Wind Turbine
512(22)
10.3.1 Encoder Calibration
514(4)
10.3.2 Synchronization with the Grid
518(5)
10.3.3 Sequential Start-up of the DFIM Based Wind Turbine
523(11)
10.4 Summary
534(1)
References
535(2)
11 Stamd-Alone DFIM Based Generation Systems
537(42)
11.1 Introduction
537(7)
11.1.1 Requirements of Stand-alone DFIM Based System
537(3)
11.1.2 Characteristics of DFIM Supported by DC Coupled Storage
540(1)
11.1.3 Selection of Filtering Capacitors
541(3)
11.2 Mathematical Description of the Stand-Alone DFIM System
544(14)
11.2.1 Model of Stand-alone DFIM
544(5)
11.2.2 Model of Stand-alone DFIM Fed from Current Source
549(2)
11.2.3 Polar Frame Model of Stand-alone DFIM
551(3)
11.2.4 Polar Frame Model of Stand-alone DFIM Fed from Current Source
554(4)
11.3 Stator Voltage Control
558(15)
11.3.1 Amplitude and Frequency Control by the Use of PLL
558(9)
11.3.2 Voltage Asymmetry Correction During Unbalanced Load Supply
567(2)
11.3.3 Voltage Harmonics Reduction During Nonlinear Load Supply
569(4)
11.4 Synchronization Before Grid Connection By Superior PLL
573(3)
11.5 Summary
576(1)
References
577(2)
12 New Trends on Wind Energy Generation
579(24)
12.1 Introduction
579(1)
12.2 Future Challenges for Wind Energy Generation: What must be Innovated
580(4)
12.2.1 Wind Farm Location
580(2)
12.2.2 Power, Efficiency, and Reliability Increase
582(1)
12.2.3 Electric Grid Integration
583(1)
12.2.4 Environmental Concerns
583(1)
12.3 Technological Trends: How They Can be Achieved
584(15)
12.3.1 Mechanical Structure of the Wind Turbine
585(1)
12.3.2 Power Train Technology
586(13)
12.4 Summary
599(1)
References
600(3)
Appendix
603(16)
A.1 Space Vector Representation
603(7)
A.1.1 Space Vector Notation
603(3)
A.1.2 Transformations to Different Reference Frames
606(3)
A.1.3 Power Expressions
609(1)
A.2 Dynamic Modeling of the DFIM Considering the Iron Losses
610(8)
A.2.1 αβ Model
611(3)
A.2.2 dq Model
614(2)
A.2.3 State-Space Representation of αβ Model
616(2)
References
618(1)
Index 619
GONZALO ABAD, PhD, is an Associate Professor in the Electronics Department at the Mondragon University, where he teaches modeling, control, and power electronics. JESŚS LÓPEZ, PhD, is an Assistant Professor in the Electrical and Electronic Engineering Department of the Public University of Navarra, where he teaches subjects related to the electrical drives and the processing of electrical power in wind turbines.

MIGUEL RODRĶGUEZ, PhD, is the Power Electronics Systems Manager at Ingeteam Technology, responsible for developing new power electronics for transmission and distribution grid applications.

LUIS MARROYO, PhD, is an Associate Professor in the Electrical and Electronic Engineering Department of the Public University of Navarra, where he teaches courses on electrical machines and power electronics.

GRZEGORZ IWANSKI, PhD, is an Associate Professor in the Institute of Control and Industrial Electronics at the Warsaw University of Technology, where he teaches courses on power electronics drives and conversion systems.