Atjaunināt sīkdatņu piekrišanu

E-grāmata: Driving Simulators for the Evaluation of Human-Machine Interfaces in Assisted and Automated Vehicles

Edited by (Shibaura Institute of Technology, College of Engineering, Department of Engineering Science and Mechani), Edited by (Shibaura Institute of Technology, College of Systems Engineering and Science, Department of Machinery and Control Systems, Japan)
  • Formāts: EPUB+DRM
  • Sērija : Transportation
  • Izdošanas datums: 22-Nov-2021
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781839530098
  • Formāts - EPUB+DRM
  • Cena: 200,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Transportation
  • Izdošanas datums: 22-Nov-2021
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781839530098

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This concise reference on driving simulators conveys the technology behind simulator systems used to test driver assistance systems and automated vehicles, including electric vehicles. Coverage includes architecture, computer graphics, evaluation parameters and applied examples.



Driving Simulators for the Evaluation of Human-Machine Interfaces in Assisted and Automated Vehicles is a concise reference work on driving simulators, which conveys the technology behind simulator systems used to test driver assistance systems and automated vehicles, including electric vehicles. Coverage includes architecture, computer graphics, evaluation parameters and applied examples.

A driving simulator is a device that has the function of presenting similar visual, auditory and force perceptions to those experienced during driving, creating the illusion that the driver is driving an actual car. The advantage of tests using a driving simulator is that it can reproduce dangerous traffic situations and tests safely. Driving simulators are also valuable in research and development into intelligent driving systems, allowing for testing and evaluation in a simulation environment rather than on the road.

With its concise selection of relevant material and applied focus, this book will be of use to research and development professionals in industry and academic researchers whose work involves automotive systems and technologies in general, and particularly those working on driving simulators and automated driving.

About the editors xi
Introduction xiii
1 Overview 1(14)
Toshio Ito
Toshiya Hirose
1.1 Introduction
1(1)
1.2 Objectives of DS
1(3)
1.3 History, evolution, and challenges of DS
4(9)
1.3.1 Driving experiment using DS
4(1)
1.3.2 Belt conveyor system
5(1)
1.3.3 Six-axis motion system
5(1)
1.3.4 Six-axis motion system and translator system
6(2)
1.3.5 Recent large-scale DS
8(5)
1.4 Conclusion
13(1)
References
13(2)
2 Present driving simulators 15(18)
Toshio Ito
Toshiya Hirose
2.1 Introduction
15(1)
2.2 DS SIoTDS-O (simple type at Omiya campus in SIT)
16(3)
2.3 DS SIoTDS-T (advanced type at Toyosu campus in SIT)
19(7)
2.3.1 Introduction of SIoTDS-T
19(2)
2.3.2 Motion device on the SIoTDS-T
21(2)
2.3.3 IG of the SIoTDS-T
23(1)
2.3.4 System configuration of the SIoTDS-T
24(2)
2.3.5 Cockpit of SIoTDS-T
26(1)
2.4 DS UoLDS (full-scale type at Leeds University) [ 3]
26(5)
2.4.1 Introduction of UoLDS
26(2)
2.4.2 UoLDS motion device
28(1)
2.4.3 IG of the DS
28(2)
2.4.4 System configuration of the UoLDS
30(1)
2.4.5 Cockpit of UoLDS
31(1)
2.5 Conclusion
31(1)
Acknowledgements
32(1)
References
32(1)
3 Architecture of driving simulators 33(68)
Yoann Penereach
Hafid Niniss
3.1 Architecture principles
33(40)
3.1.1 Introduction
33(1)
3.1.2 Hardware/software general architecture
34(2)
3.1.3 System integration
36(4)
3.1.4 Hardware architecture
40(20)
3.1.5 Software architecture
60(13)
3.2 Motion cueing and haptic feedback
73(18)
3.2.1 The human motion perception
73(3)
3.2.2 Reproduction of the motion stimulus in the simulator
76(4)
3.2.3 Motion cueing algorithm
80(11)
3.3 The evolution of simulators with VR
91(5)
3.3.1 Driving simulation and transportation
92(1)
3.3.2 VR and cockpit HMI
93(2)
3.3.3 AI and machine learning
95(1)
References
96(5)
4 Computer graphics in driving simulators 101(42)
Yoann Pencreach
Christophe Soulier
Hiroyuki Fujii
4.1 Principles of computer graphics
101(2)
4.1.1 Objectives
101(1)
4.1.2 Basic concepts
102(1)
4.2 Modeling
103(18)
4.2.1 Sky modeling
103(3)
4.2.2 Lamp and lamp pattern modeling
106(1)
4.2.3 Modeling the road surface
107(3)
4.2.4 Transparent and semi-transparent surfaces
110(3)
4.2.5 Optimization for real-time application
113(4)
4.2.6 Particle systems: rain, snow, and smokes
117(1)
4.2.7 Water on road surface and windshield
118(3)
4.3 Shading
121(12)
4.3.1 Rendering of light sources
122(2)
4.3.2 Physically based rendering
124(2)
4.3.3 Material layering
126(1)
4.3.4 Color range and tone mapping
126(3)
4.3.5 Data and processing flow
129(3)
4.3.6 Multitarget rendering
132(1)
4.4 Hardware
133(8)
4.4.1 Rendering hardware architecture
133(4)
4.4.2 Synchronization over multiple displays
137(4)
4.4.3 Synchronization of driver's eye with VR viewpoint
141(1)
References
141(2)
5 Tools for evaluating HMI 143(56)
Toshio Ito
Toshiya Hirose
Nobuhisa Tanaka
5.1 Introduction
143(1)
5.2 Gaze detection
144(4)
5.2.1 Introduction of gaze detection
144(1)
5.2.2 Measurement method
145(1)
5.2.3 Issues
146(2)
5.3 Response time evaluation
148(4)
5.4 Electroencephalograph - brain wave detection
152(3)
5.4.1 Introduction of electroencephalograph - brain wave detection
152(1)
5.4.2 Measurement method
153(2)
5.5 Cerebral blood flow - brain blood detection
155(3)
5.6 Electrocardiograph - heartbeat detection
158(2)
5.7 Driving performance
160(2)
5.8 Steering wheel angle
162(1)
5.9 Simulator sickness evaluation
163(2)
5.10 ADAS evaluation by DS
165(3)
5.10.1 FVCWS evaluation by DS
165(1)
5.10.2 Automated breaking evaluation by DS
166(1)
5.10.3 ACC evaluation by DS
167(1)
5.10.4 LDWS evaluation by DS
167(1)
5.10.5 LKA evaluation by DS
168(1)
5.11 Trust evaluation
168(5)
5.11.1 Concept of validity
168(2)
5.11.2 Visual information processing
170(2)
5.11.3 Vestibular information processing
172(1)
5.11.4 Auditory information processing
172(1)
5.11.5 Physical consistency between perceptual information
173(1)
5.12 Automated driving evaluation by DS
173(20)
5.12.1 Take-over evaluation by DS
174(11)
5.12.2 Ethics evaluation by DS
185(5)
5.12.3 Communication method evaluation by DS
190(3)
5.13 Conclusion
193(2)
References
195(4)
6 Applications using driving simulators 199(90)
Toshio Ito
Toshiya Hirose
6.1 Introduction
199(1)
6.2 A study on the effect of HUD information on driving operation
200(7)
6.2.1 Introduction of evaluation for HUD information
200(1)
6.2.2 Method
201(2)
6.2.3 Result
203(3)
6.2.4 Conclusion of evaluation for HUD information
206(1)
6.3 Study on AEBS applying driver models
207(6)
6.3.1 Introduction of evaluation for AEBS
207(1)
6.3.2 AEBS taking into account the individual characteristics of drivers
207(1)
6.3.3 Method
208(1)
6.3.4 Experiment on braking operations by drivers
208(1)
6.3.5 Experiment on evaluation of alarm timing
209(1)
6.3.6 Results and Discussion
209(3)
6.3.7 Conclusion of evaluation for AEBS
212(1)
6.4 Effect of unconscious learning for driver attention
213(12)
6.4.1 Introduction of unconscious learning
213(2)
6.4.2 Experimental method
215(4)
6.4.3 Experimental results
219(5)
6.4.4 Summary of unconscious learning
224(1)
6.5 Comparison of the effects among the keeping awakening tasks for the driver during automated driving using EEG analysis
225(13)
6.5.1 Introduction of keeping awakening tasks
225(1)
6.5.2 Experimental tasks
226(2)
6.5.3 Experiment
228(4)
6.5.4 Experimental results
232(3)
6.5.5 Discussion
235(3)
6.5.6 Summary of keeping awakening tasks
238(1)
6.6 Estimation of driver drowsiness change in automated driving using heart beat analysis
238(10)
6.6.1 Introduction of heart beat analysis
238(1)
6.6.2 Heart rate analysis
239(2)
6.6.3 Experiment
241(3)
6.6.4 Results of heart rate variability analysis
244(1)
6.6.5 Classification results
245(1)
6.6.6 Summary of heart beat analysis
246(2)
6.7 Driving characteristics of low awakening drivers during transition from automatic driving to manual driving
248(3)
6.7.1 Introduction
248(1)
6.7.2 Method
248(1)
6.7.3 Results
249(2)
6.7.4 Conclusion
251(1)
6.8 Driving characteristics of low awakening drivers during transition from automatic driving to manual driving
251(34)
6.8.1 Introduction of evaluation for transition from automatic driving to manual driving
251(2)
6.8.2 Experimental device
253(3)
6.8.3 Experimental methods
256(4)
6.8.4 Experimental results
260(21)
6.8.5 Conclusions
281(4)
6.8.6 Conclusion of evaluation for transition from automatic driving to manual driving
285(1)
6.9 Conclusion
285(2)
References
287(2)
Index 289
Toshio Ito is a professor at the Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Japan. From 1982-2013 he worked at Daihatsu Motor Co., in R&D for advanced driver assistance systems (ADAS) and commercialized pre-crash safety systems. Since 2013 he has been a professor at the Shibaura Institute of Technology, where he specializes in the study of the driver behaviour for ADAS and driving simulators.



Toshiya Hirose is an associate professor at the Department of Engineering Science and Mechanics, College of Engineering, Shibaura Institute of Technology, Japan. Previously, he worked at National Traffic Safety and Environment Laboratory (NTSEL) in Japan. He joined the Shibaura Institute of Technology in 2013. He specializes in research using driving simulators for the construction of driving models, and evaluation of driver assist systems and automated driving systems.