Atjaunināt sīkdatņu piekrišanu

E-grāmata: Duality in 19th and 20th Century Mathematical Thinking

Edited by , Edited by
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 214,13 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume brings together scholars across various domains of the history and philosophy of mathematics, investigating duality as a multi-faceted phenomenon. Encompassing both systematic analysis and historical examination, the book endeavors to elucidate the status, roles, and dynamics of duality within the realms of 19th and 20th-century mathematics. Eschewing a priori notions, the contributors embrace the diverse interpretations and manifestations of duality, thus presenting a nuanced and comprehensive perspective on this intricate subject.





Spanning a broad spectrum of mathematical topics and historical periods, the book uses detailed case studies to investigate the different forms in which duality appeared and still appears in mathematics, to study their respective histories, and to analyze interactions between the different forms of duality. The chapters inquire into questions such as the contextual occurrences of duality in mathematics, the influence of chosen forms of representation, the impact of investigations of duality on mathematical practices, and the historical interconnections among various instances of duality. Together, they aim to answer a core question: Is there such a thing as duality in mathematics, or are there just several things called by the same name and similar in some respect? What emerges is that duality can be considered as a basic structure of mathematical thinking, thereby opening new horizons for the research on the history and the philosophy of mathematics and the reflection on mathematics in general.





The volume will appeal not only to experts in the discipline but also to advanced students of mathematics, history, and philosophy intrigued by the complexities of this captivating subject matter.
Preface.
Chapter
1. Ralf Krömer, Emmylou Haffner: Introduction.- Part
I. The 19th century heritage.
Chapter
2. Michael Friedman: On contour
apparent, courbe de contact and ramification curves: Duality between a
principle and a tool.
Chapter
3. Juan Luis Gastaldi: De Morgans De Morgans
Laws: Duality in the Emergence of Formal Logic.
Chapter
4. Dirk Schlimm: The
emergence of duality in 19th-century algebra of logic.
Chapter
5. Emmylou
Haffner: Duality as a guiding light in the genesis of Dedekinds
Dualgruppen.
Chapter
6. Erhard Scholz: From Grassmann complements to
Hodge-duality.- Part II. From topology to groups.
Chapter
7. Stephan
Oltmanns, Ralf Krömer, Klaus Volkert: Duality theorems in topology.
Chapter
8. Ralf Krömer: The historical development of Pontrjagin duality.
Chapter
9.
Harald Kümmerle: Tannaka Tadaos 1938 paper on the duality of noncommutative
topological groups and its historical background.
Chapter
10. Christophe
Eckes: Philosophical and mathematical duality in Albert Lautmans work.- Part
III. Functional analysis and related fields.
Chapter
11. Alessa Waldvogel:
The development of dual spaces in functional analysis.
Chapter
12. Frédéric
Jaėck: Duality in Banachs 1929 work on functionals.
Chapter
13. Ralf
Krömer: Marshall Stone and duality: from differential equations to Boolean
algebras.
Chapter
14. Ralf Krömer: Duality ą la Bourbaki.- 
Chapter
15.
Jesper Lützen: Duality and Distributions: An Application of Topological
Vector Spaces.- Part IV. The post-war outlook.
Chapter
16. Tinne Hoff
Kjeldsen: From duality in mathematical programming to Fenchel duality and
convex analysis: Duality as a force of inspiration in the creation of new
mathematics.
Chapter
17. Jean-Pierre Marquis: An Historical Perspective on
Duality and Category Theory.- List of abbreviations.- Bibliography.- Author
index.
Ralf Krömer is Professor of mathematics and its didactics at the Bergische Universität Wuppertal. His research focuses mainly on the history of mathematics from the late 17th to the 20th century. His research interests include in particular historical themes around Leibniz, Poincaré, the Bourbaki group, structural mathematics, and category theory, but also philosophical aspects of these topics as well as the use of the history of mathematics in its teaching.





Emmylou Haffner is a CNRS research scientist at the Institut des Textes et Manuscrits Modernes (École Normale Supérieure). Her research focuses on the history of mathematics in the 19th and 20th centuries, with particular interest in manuscripts and genetic criticism.