|
|
|
The Why and How of Dynamic Modeling |
|
|
3 | (28) |
|
|
3 | (2) |
|
Static, Comparative Static, and Dynamic Models |
|
|
5 | (1) |
|
Model Complexity and Explanatory Power |
|
|
6 | (2) |
|
|
8 | (2) |
|
|
10 | (11) |
|
|
21 | (1) |
|
STELLA's Numeric Solution Techniques |
|
|
22 | (4) |
|
|
26 | (3) |
|
The Detailed Modeling Process |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (18) |
|
|
31 | (3) |
|
Epidemic Model with Randomness |
|
|
34 | (2) |
|
|
36 | (2) |
|
Two Population Epidemic Model |
|
|
38 | (5) |
|
Epidemic with Vaccination |
|
|
43 | (4) |
|
|
47 | (2) |
|
|
49 | (1) |
|
Matching Experiments and Models of Insect Life Cycles |
|
|
49 | (4) |
|
|
53 | (1) |
|
Two-Age Class Parasite Model |
|
|
54 | (4) |
|
|
58 | (5) |
|
|
|
Malaria and Sickle Cell Anemia |
|
|
63 | (20) |
|
|
63 | (9) |
|
|
63 | (7) |
|
|
70 | (2) |
|
Sickle Cell Anemia and Malaria in Balance |
|
|
72 | (11) |
|
|
72 | (4) |
|
|
76 | (7) |
|
|
83 | (18) |
|
|
83 | (7) |
|
|
90 | (11) |
|
|
101 | (14) |
|
Chagas Disease Spread and Control Strategies |
|
|
102 | (8) |
|
|
110 | (5) |
|
|
115 | (22) |
|
|
115 | (13) |
|
|
128 | (9) |
|
|
137 | (16) |
|
Model Assumptions and Structure |
|
|
138 | (6) |
|
|
144 | (9) |
|
|
153 | (8) |
|
|
153 | (1) |
|
|
154 | (2) |
|
|
156 | (1) |
|
|
157 | (4) |
|
|
161 | (10) |
|
|
161 | (1) |
|
|
161 | (5) |
|
|
166 | (2) |
|
|
168 | (3) |
|
Biological Control of Pestilence |
|
|
171 | (34) |
|
|
171 | (5) |
|
Herbivore-Algae Predator-Prey Model |
|
|
171 | (3) |
|
|
174 | (2) |
|
Bluegill Population Management |
|
|
176 | (15) |
|
|
176 | (2) |
|
|
178 | (4) |
|
|
182 | (1) |
|
|
183 | (8) |
|
|
191 | (14) |
|
Infestation of Fraser Fir |
|
|
191 | (1) |
|
|
191 | (6) |
|
|
197 | (8) |
|
Indirect Susceptible-Infected-Resistant Models of Arboviral Encephalitis Transmission* |
|
|
205 | (20) |
|
Modeling West Nile Virus Dynamics Emily Wheeler and Traci Barkley |
|
|
205 | (1) |
|
Susceptible-Infected-Resistant (SIR) Models in Dynamic Populations |
|
|
206 | (4) |
|
Model Structure and Behavior |
|
|
206 | (2) |
|
|
208 | (2) |
|
Base WNV SIR Model with a Dynamic Vector Population |
|
|
210 | (6) |
|
Base Model Structure and Behavior |
|
|
210 | (3) |
|
|
213 | (3) |
|
Avian Population Effects and Seasonal Dynamics |
|
|
216 | (9) |
|
Modifications to the Base Model |
|
|
216 | (2) |
|
Avian Demography and Disease Persistence |
|
|
218 | (1) |
|
Weather as an Extrinsic Driver of Outbreak Severity |
|
|
219 | (3) |
|
|
222 | (3) |
|
|
225 | (12) |
|
Basic Disease Model with Chaos |
|
|
226 | (5) |
|
|
226 | (1) |
|
Detecting and Interpreting Chaos |
|
|
227 | (3) |
|
|
230 | (1) |
|
Chaos with Nicholson-Bailey Equations |
|
|
231 | (6) |
|
Host-Parasitoid Interactions |
|
|
231 | (2) |
|
|
233 | (4) |
|
Catastrophe and Pestilence |
|
|
237 | (14) |
|
|
237 | (3) |
|
Spruce Budworm Catastrophe |
|
|
240 | (8) |
|
|
248 | (3) |
|
Spatial Pestilence Dynamics |
|
|
251 | (32) |
|
Diseased and Healthy Immigrating Insects |
|
|
251 | (9) |
|
|
255 | (5) |
|
The Spatial Dynamic Spread of Rabies in Foxes |
|
|
260 | (23) |
|
|
260 | (1) |
|
|
261 | (1) |
|
Previous Fox Rabies Models |
|
|
262 | (2) |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
267 | (2) |
|
|
269 | (1) |
|
Georeferencing the Modeling Process |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
|
|
271 | (2) |
|
|
273 | (1) |
|
The Effects of Disease Alone |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
274 | (9) |
|
|
|
|
283 | (2) |
Index |
|
285 | |