Atjaunināt sīkdatņu piekrišanu

Dynamical Systems Approach to Turbulence [Mīkstie vāki]

(University of Copenhagen), , (University of Copenhagen), (Universitą degli Studi di Roma 'La Sapienza', Italy)
  • Formāts: Paperback / softback, 372 pages, height x width x depth: 245x170x20 mm, weight: 908 g, 1 Tables, unspecified; 15 Halftones, unspecified; 92 Line drawings, unspecified
  • Sērija : Cambridge Nonlinear Science Series
  • Izdošanas datums: 22-Aug-2005
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521017947
  • ISBN-13: 9780521017947
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 85,93 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 372 pages, height x width x depth: 245x170x20 mm, weight: 908 g, 1 Tables, unspecified; 15 Halftones, unspecified; 92 Line drawings, unspecified
  • Sērija : Cambridge Nonlinear Science Series
  • Izdošanas datums: 22-Aug-2005
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 0521017947
  • ISBN-13: 9780521017947
Citas grāmatas par šo tēmu:
This book, first published in 1998, treats turbulence from the point of view of dynamical systems. The exposition centres around a number of important simplified models for turbulent behaviour in systems ranging from fluid motion (classical turbulence) to chemical reactions and interfaces in disordered systems.The modern theory of fractals and multifractals now plays a major role in turbulence research, and turbulent states are being studied as important dynamical states of matter occurring also in systems outside the realm of hydrodynamics, i.e. chemical reactions or front propagation. The presentation relies heavily on simplified models of turbulent behaviour, notably shell models, coupled map lattices, amplitude equations and interface models, and the focus is primarily on fundamental concepts such as the differences between large and small systems, the nature of correlations and the origin of fractals and of scaling behaviour. This book will be of interest to graduate students and researchers interested in turbulence, from physics and applied mathematics backgrounds.

Recenzijas

"...overall this is a useful review of a part of the recent work on dynamical systems and turbulence..." Mathematical Reviews

Papildus informācija

This book treats turbulence from the point of view of deterministic dynamical systems.
To the memory of Giovanni xiii
Preface xv
Introduction xvii
Chapter 1 Turbulence and dynamical systems 1(20)
1.1 What do we mean by turbulence?
1(2)
1.2 Examples of turbulent phenomena
3(8)
1.2.1 Fluids
3(4)
1.2.2 Chemical turbulence
7(2)
1.2.3 Flame fronts
9(2)
1.3 Why a dynamical system approach?
11(1)
1.4 Examples of dynamical systems for turbulence
11(3)
1.4.1 Shell models
11(1)
1.4.2 Coupled map lattices
12(1)
1.4.3 Cellular automata
13(1)
1.5 Characterization of chaos in high dimensionality
14(7)
1.5.1 Lyapunov exponents in extended systems
14(1)
1.5.2 Lyapunov spectra and dimension densities
15(3)
1.5.3 Characterization of chaos in discrete models
18(1)
1.5.4 The correlation length
18(1)
1.5.5 Scaling invariance and chaos
19(2)
Chapter 2 Phenomenology of hydrodynamic turbulence 21(27)
2.1 Turbulence as a statistical theory
21(10)
2.1.1 Statistical mechanics of a perfect fluid
22(2)
2.1.2 Basic facts and ideas on fully developed turbulence
24(4)
2.1.3 The closure problem
28(3)
2.2 Scaling invariance in turbulence
31(3)
2.3 Multifractal description of fully developed turbulence
34(11)
2.3.1 Scaling of the structure functions
34(2)
2.3.2 Multiplicative models for intermittency
36(4)
2.3.3 Probability distribution function of the velocity gradients
40(3)
2.3.4 Multiscaling
43(1)
2.3.5 Number of degrees of freedom of turbulence
44(1)
2.4 Two-dimensional turbulence
45(3)
Chapter 3 Reduced models for hydrodynamic turbulence 48(43)
3.1 Dynamical systems as models of the energy cascade
48(1)
3.2 A brief overview on shell models
49(9)
3.2.1 The model of Desnyansky and Novikov
51(1)
3.2.2 The model of Gledzer, Ohkitani and Yamada (the GOY model)
52(4)
3.2.3 Hierarchical shell models
56(1)
3.2.4 Continuum limit of the shell models
57(1)
3.3 Dynamical properties of the GOY models
58(10)
3.3.1 Fixed points and scaling
58(2)
3.3.2 Transition from a stable fixed point to chaos
60(5)
3.3.3 The Lyapunov spectrum
65(3)
3.4 Multifractality in the GOY model
68(6)
3.4.1 Anomalous scaling of the structure functions
68(3)
3.4.2 Dynamical intermittency
71(2)
3.4.3 Construction of a 3D incompressible velocity field from the shell models
73(1)
3.5 A closure theory for the GOY model
74(4)
3.6 Shell models for the advection of passive scalars
78(5)
3.7 Shell models for two-dimensional turbulence
83(5)
3.8 Low-dimensional models for coherent structures
88(3)
Chapter 4 Turbulence and coupled map lattices 91(47)
4.1 Introduction to coupled chaotic maps
92(5)
4.1.1 Linear stability of the coherent state
93(1)
4.1.2 Spreading of perturbations
94(3)
4.2 Scaling at the critical point
97(9)
4.2.1 Scaling of the Lyapunov exponents
97(2)
4.2.2 Scaling of the correlation length
99(2)
4.2.3 Spreading of localized perturbations
101(3)
4.2.4 Renormalization group results
104(2)
4.3 Lyapunov spectra
106(6)
4.3.1 Coupled map lattices with conservation laws
107(3)
4.3.2 Analytic results
110(2)
4.4 Coupled maps with laminar states
112(11)
4.4.1 Spatio-temporal intermittency
112(2)
4.4.2 Invariant measures and Perron–Frobenius equation of CML
114(1)
4.4.3 Mean field approximation and phase diagram
115(3)
4.4.4 Direct iterates and finite size scaling
118(3)
4.4.5 Spatial correlations and hyperscaling
121(2)
4.5 Coupled map lattices with anisotropic couplings
123(15)
4.5.1 Convective instabilities and turbulent spots
123(5)
4.5.2 Coherent chaos in anisotropic systems
128(3)
4.5.3 A boundary layer instability in an anisotropic system
131(3)
4.5.4 A coupled map lattice for a convective system
134(4)
Chapter 5 Turbulence in the complex Ginzburg–Landau equation 138(45)
5.1 The complex Ginzburg–Landau equation
139(4)
5.2 The stability of the homogeneous periodic state and the phase equation
143(3)
5.3 Plane waves and their stability
146(2)
5.3.1 The stability of plane waves
146(2)
5.3.2 Convective versus absolute stability
148(1)
5.4 Large-scale simulations and the coupled map approximation
148(2)
5.5 Spirals and wave number selection
150(2)
5.6 The onset of turbulence
152(6)
5.6.1 Transient turbulence and nucleation
155(3)
5.7 Glassy states of bound vortices
158(3)
5.8 Vortex interactions
161(7)
5.8.1 Microscopic theory of shocks
162(1)
5.8.2 Asymptotic properties
163(4)
5.8.3 Weak shocks
167(1)
5.9 Phase turbulence and the Kuramoto–Sivashinsky equation
168(4)
5.9.1 Correlations in the Kuramoto–Sivashinsky equation
170(1)
5.9.2 Dimension densities and correlations in phase turbulence
171(1)
5.10 Anisotropic phase equation
172(11)
5.10.1 The shape of a spreading spot
173(5)
5.10.2 Turbulent spots and pulses
178(3)
5.10.3 Anisotropic turbulent spots in two dimensions
181(2)
Chapter 6 Predictability in high-dimensional systems 183(28)
6.1 Predictability in turbulence
185(3)
6.1.1 Maximum Lyapunov exponent of a turbulent flow
185(1)
6.1.2 The classical theory of predictability in turbulence
186(2)
6.2 Predictability in systems with many characteristic times
188(3)
6.3 Chaos and butterfly effect in the GOY model
191(9)
6.3.1 Growth of infinitesimal perturbations and dynamical intermittency
191(4)
6.3.2 Statistics of the predictability time and its relation with intermittency
195(2)
6.3.3 Growth of non-infinitesimal perturbations
197(3)
6.4 Predictability in extended systems
200(2)
6.5 Predictability in noisy systems
202(7)
6.6 Final remarks
209(2)
Chapter 7 Dynamics of interfaces 211(33)
7.1 Turbulence and interfaces
211(1)
7.2 The Burgers equation
212(3)
7.3 The Langevin approach to dynamical interfaces: the KPZ equation
215(4)
7.4 Deterministic interface dynamics: the Kuramoto–Sivashinsky equation
219(12)
7.4.1 Cross-over to KPZ behaviour
222(3)
7.4.2 The Kuramoto–Sivashinsky equation in 2-1-1 dimensions
225(2)
7.4.3 Interfaces in coupled map lattices
227(4)
7.5 Depinning models
231(12)
7.5.1 Quenched randomness and directed percolation networks
231(1)
7.5.2 Self-organized-critical dynamics: the Sneppen model
232(3)
7.5.3 Coloured activity
235(2)
7.5.4 A scaling theory for the Sneppen model: mapping to directed percolation
237(3)
7.5.5 A geometric description of the avalanche dynamics
240(1)
7.5.6 Multiscaling
241(2)
7.6 Dynamics of a membrane
243(1)
Chapter 8 Lagrangian chaos 244(33)
8.1 General remarks
244(9)
8.1.1 Examples of Lagrangian chaos
247(4)
8.1.2 Stretching of material lines and surfaces
251(2)
8.2 Eulerian versus Lagrangian chaos
253(12)
8.2.1 Onset of Lagrangian chaos in two-dimensional flows
255(3)
8.2.2 Eulerian chaos and fluid particle motion
258(6)
8.2.3 A comment on Lagrangian chaos
264(1)
8.3 Statistics of passive fields
265(12)
8.3.1 The growth of scalar gradients
265(1)
8.3.2 The multifractal structure for the distribution of scalar gradients
266(2)
8.3.3 The power spectrum of scalar fields
268(2)
8.3.4 Some remarks on the validity of the Batchelor law
270(2)
8.3.5 Intermittency and multifractality in magnetic dynamos
272(5)
Chapter 9 Chaotic diffusion 277(15)
9.1 Diffusion in incompressible flows
279(6)
9.1.1 Standard diffusion in the presence of Lagrangian chaos
279(2)
9.1.2 Standard diffusion in steady velocity fields
281(2)
9.1.3 Anomalous diffusion in random velocity fields
283(1)
9.1.4 Anomalous diffusion in smooth velocity fields
284(1)
9.2 Anomalous diffusion in fields generated by extended systems
285(7)
9.2.1 Anomalous diffusion in the Kuramoto–Sivashinsky equation
286(4)
9.2.2 Multidiffusion along an intermittent membrane
290(2)
Appendix A Hopf bifurcation 292(2)
Appendix B Hamiltonian systems 294(7)
Appendix C Characteristic and generalized Lyapunov exponents 301(8)
Appendix D Convective instabilities and linear front propagation 309(6)
Appendix E Generalized fractal dimensions and multifractals 315(5)
Appendix F Multiaffine fields 320(5)
Appendix G Reduction to a finite-dimensional dynamical system 325(4)
Appendix H Directed percolation 329(3)
References 332(15)
Index 347