Atjaunināt sīkdatņu piekrišanu

Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case [Mīkstie vāki]

  • Formāts: Paperback / softback, 154 pages, height x width: 254x178 mm, weight: 320 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-Oct-2020
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470442175
  • ISBN-13: 9781470442170
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 154 pages, height x width: 254x178 mm, weight: 320 g
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-Oct-2020
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470442175
  • ISBN-13: 9781470442170
Citas grāmatas par šo tēmu:
"We study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. We prove that for sufficiently regular initial data of size [ epsilon] [ less than or equal to] c0Re-1 for some universal c0 > 0, the solution is global, remains within O(c0) of the Couette flow in L2, and returns to the Couette flow as t [ right arrow] [ infinity]. For times t >/-Re1/3, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of "2.5 dimensional" streamwise-independent solutions referred to as streaks. Our analysis contains perturbations that experience a transient growth of kinetic energy from O(Re-1) to O(c0) due to the algebraic linear instability known as the lift-up effect. Furthermore, solutions can exhibit a direct cascade of energy to small scales. The behavior is very different from the 2D Couette flow, in which stability is independent of Re, enstrophy experiences a directcascade, and inviscid damping is dominant (resulting in a kind of inverse energy cascade). In 3D, inviscid damping will play a role on one component of the velocity, but the primary stability mechanism is the mixing-enhanced dissipation. Central to the proof is a detailed analysis of the interplay between the stabilizing effects of the mixing and enhanced dissipation and the destabilizing effects of the lift-up effect, vortex stretching, and weakly nonlinear instabilities connected to the non-normal nature of the linearization"--
Jacob Bedrossian, University of Maryland, College Park, MD,

Pierre Germain, Courant Institute of Mathematical Sciences, New York, NY

Nader Masmoudi, Courant Institute of Mathematical Sciences, New York City, NY