Atjaunināt sīkdatņu piekrišanu

E-grāmata: Dynamics in One Non-Archimedean Variable

  • Formāts: 463 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 03-May-2019
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470451066
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 121,35 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 463 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 03-May-2019
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470451066
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The theory of complex dynamics in one variable, initiated by Fatou and Julia in the early twentieth century, concerns the iteration of a rational function acting on the Riemann sphere. Building on foundational investigations of $p$-adic dynamics in the late twentieth century, dynamics in one non-archimedean variable is the analogous theory over non-archimedean fields rather than over the complex numbers. It is also an essential component of the number-theoretic study of arithmetic dynamics.

This textbook presents the fundamentals of non-archimedean dynamics, including a unified exposition of Rivera-Letelier's classification theorem, as well as results on wandering domains, repelling periodic points, and equilibrium measures. The Berkovich projective line, which is the appropriate setting for the associated Fatou and Julia sets, is developed from the ground up, as are relevant results in non-archimedean analysis. The presentation is accessible to graduate students with only first-year courses in algebra and analysis under their belts, although some previous exposure to non-archimedean fields, such as the $p$-adic numbers, is recommended. The book should also be a useful reference for more advanced students and researchers in arithmetic and non-archimedean dynamics.
List of Notation
xiii
Preface xvii
Introduction 1(10)
A brief history
1(2)
What's in this book
3(2)
Some things not in this book
5(1)
Some possible paths through this book
6(5)
Part 1 Background
Chapter 1 Basic Dynamics on P1(K)
11(22)
§1.1 Elementary discrete dynamics
11(2)
§1.2 Morphisms and coordinate changes
13(2)
§1.3 Degrees, multiplicities, and multipliers
15(4)
§1.4 Critical points and exceptional sets
19(3)
§1.5 Dynamics in degree less than 2
22(1)
§1.6 An overview of complex dynamics
23(10)
Exercises for
Chapter 1
26(7)
Chapter 2 Some Background on Non-Archimedean Fields
33(14)
§2.1 Absolute values
33(5)
§2.2 Disks
38(9)
Exercises for
Chapter 2
42(5)
Chapter 3 Power Series and Laurent Series
47(24)
§3.1 Convergence of power series
47(2)
§3.2 Power series rings
49(3)
§3.3 Newton polygons
52(4)
§3.4 Images of disks under power series
56(3)
§3.5 P1(Cv)-disks and affinoids
59(2)
§3.6 Laurent series on open annuli
61(1)
§3.7 Images of annuli
62(9)
Exercises for
Chapter 3
64(7)
Part 2 Elementary Non-Archimedean Dyanmics
Chapter 4 Fundamentals of Non-Archimedean Dynamics
71(26)
§4.1 Classifying periodic points
71(2)
§4.2 Local conjugacies at fixed points (optional)
73(2)
§4.3 Good reduction
75(5)
§4.4 Lattes maps
80(5)
§4.5 Dynamics on disks
85(12)
Exercises for
Chapter 4
90(7)
Chapter 5 Fatou and Julia Sets
97(24)
§5.1 The spherical metric
97(2)
§5.2 Fatou and Julia sets
99(6)
§5.3 Further properties of Fatou and Julia sets
105(5)
§5.4 Examples of non-archimedean Fatou and Julia sets
110(11)
Exercises for
Chapter 5
116(5)
Part 3 The Berkovich Line
Chapter 6 The Berkovich Projective Line
121(32)
§6.1 Seminorms as Berkovich points
122(3)
§6.2 Disks in the Berkovich affine line
125(3)
§6.3 Berkovich's classification
128(1)
§6.4 The Berkovich projective line
129(4)
§6.5 Disks and affinoids in P1an
133(5)
§6.6 Paths and path-connectedness
138(5)
§6.7 Directions at Berkovich points
143(1)
§6.8 The hyperbolic metric
144(9)
Exercises for
Chapter 6
146(7)
Chapter 7 Rational Functions and Berkovich Space
153(30)
§7.1 The action of rational functions
153(3)
§7.2 Images of points of Types II and III
156(3)
§7.3 Local degrees in directions
159(3)
§7.4 Local degrees at Berkovich points
162(5)
§7.5 Computing local degrees
167(3)
§7.6 The injectivity and ramification loci
170(13)
Exercises for
Chapter 7
173(10)
Part 4 Dynamics on the Berkovich Line
Chapter 8 Introduction to Dynamics on Berkovich Space
183(20)
§8.1 Berkovich Fatou and Julia sets
183(2)
§8.2 Classifying Berkovich periodic points
185(7)
§8.3 Good reduction in Berkovich space
192(2)
§8.4 More basic properties of Berkovich Julia sets
194(1)
§8.5 Examples
195(8)
Exercises for
Chapter 8
198(5)
Chapter 9 Classifying Berkovich Fatou Components
203(28)
§9.1 Berkovich Fatou components
203(3)
§9.2 Attracting components
206(5)
§9.3 Indifferent components
211(9)
§9.4 Rivera-Letelier's classification
220(11)
Exercises for
Chapter 9
226(5)
Chapter 10 Further Results on Periodic Components
231(22)
§10.1 Periodic points in the indifference domain
231(4)
§10.2 Indifferent components in mixed characteristic
235(5)
§10.3 Counting cycles of Fatou components
240(5)
§10.4 Infinitely many periodic components
245(8)
Exercises for
Chapter 10
247(6)
Chapter 11 Wandering Domains
253(38)
§11.1 Wandering domains are eventually disks
253(3)
§11.2 An expansion theorem
256(11)
§11.3 No wandering domains for p-adic fields: A theorem
267(6)
§11.4 Wandering domains for tame maps
273(4)
§11.5 Wandering domains for tame polynomials
277(14)
Exercises for
Chapter 11
286(5)
Chapter 12 Repelling Points in Berkovich Space
291(32)
§12.1 Preliminary repelling fixed point lemmas
291(6)
§12.2 Repelling fixed points exist
297(5)
§12.3 Repelling density
302(8)
§12.4 Type I repelling density: Hsia's theorem
310(2)
§12.5 Type I repelling density: Bezivin's theorem
312(11)
Exercises for
Chapter 12
318(5)
Chapter 13 The Equilibrium Measure
323(38)
§13.1 Some measure theory
323(4)
§13.2 Weak convergence
327(1)
§13.3 Potential functions
328(3)
§13.4 The Laplacian operator
331(5)
§13.5 Construction of the equilibrium measure
336(6)
§13.6 Local heights
342(5)
§13.7 Equidistribution of points of small canonical height
347(14)
Exercises for
Chapter 13
352(9)
Part 5 Proofs from Non-Archimedean Analysis
Chapter 14 Proofs of Results from Non-Archimedean Analysis
361(24)
§14.1 Basic power series proofs
361(3)
§14.2 The Weierstrass preparation theorem
364(4)
§14.3 Proofs related to Newton polygons
368(2)
§14.4 Proofs related to mapping properties of disks
370(4)
§14.5 Weierstrass preparation theorem for open annuli
374(5)
§14.6 Proofs about Laurent series on annuli
379(1)
§14.7 An overview of rigid analysis (optional)
380(5)
Exercises for
Chapter 14
382(3)
Chapter 15 Proofs of Berkovich Space Results
385(26)
§15.1 Basic results on seminorms
385(2)
§15.2 Proofs on Berkovich points
387(5)
§15.3 Basic proofs on the Berkovich projective line
392(4)
§15.4 Proving compactness
396(3)
§15.5 Proving path-connectedness
399(6)
§15.6 Other Berkovich space proofs
405(6)
Exercises for
Chapter 15
409(2)
Chapter 16 Proofs of Results on Berkovich Maps
411(18)
§16.1 Basic results on Berkovich maps
411(5)
§16.2 Proofs on local degrees
416(7)
§16.3 Proving Rivera-Letelier's reduction theorem
423(6)
Exercises for
Chapter 16
426(3)
Appendices
Appendix A Fatou Components without Berkovich Space
429(8)
§A.1 Analytic components and D-components
429(2)
§A.2 Examples of non-archimedean Fatou components
431(2)
§A.3 Open analytic components
433(2)
Exercises for Appendix A
435(2)
Appendix B Other Constructions of Berkovich Spaces
437(12)
§B.1 Berkovich disks via power series
437(3)
§B.2 Seminorms in homogeneous coordinates
440(3)
§B.3 Berkovich morphisms via homogeneous coordinates
443(2)
§B.4 Rivera-Letelier's construction of P1an
445(2)
Exercises for Appendix B
447(2)
Bibliography 449(8)
Index 457
Robert L. Benedetto, Amherst College, MA.