1 Introduction |
|
1 | (8) |
|
1.1 Tree-Type Robotic Systems |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.3 Important Features of the Book |
|
|
4 | (1) |
|
|
5 | (4) |
2 Dynamics of Robotic Systems |
|
9 | (18) |
|
|
9 | (6) |
|
|
9 | (3) |
|
2.1.2 Tree-Type Robotic Hand |
|
|
12 | (1) |
|
|
12 | (3) |
|
2.2 Representations of Rotations |
|
|
15 | (1) |
|
2.2.1 Denavit-Hartenherg Parameters |
|
|
15 | (1) |
|
|
15 | (1) |
|
|
16 | (4) |
|
2.3.1 Equations of Motion |
|
|
16 | (1) |
|
2.3.2 Orthogonal Complements |
|
|
17 | (1) |
|
|
18 | (1) |
|
2.3.4 Open vs. Closed Chains |
|
|
18 | (1) |
|
2.3.5 Dynamics of Legged Robots |
|
|
19 | (1) |
|
|
20 | (4) |
|
2.4.1 Model-Based Control |
|
|
20 | (2) |
|
2.4.2 Recursive Algorithms |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (2) |
|
|
24 | (3) |
3 Euler-Angle-Joints (EAJs) |
|
27 | (30) |
|
|
28 | (1) |
|
3.2 Denavit-Hartenherg (DH) Parameters |
|
|
29 | (3) |
|
3.3 Euler-Angle-Joints (EAJs) |
|
|
32 | (5) |
|
3.3.1 DH Parameterization of Euler Angles |
|
|
33 | (1) |
|
3.3.2 Elementary Rotations |
|
|
33 | (2) |
|
3.3.3 Composite Rotations |
|
|
35 | (2) |
|
3.4 Euler Angles Using Euler-Angle-Joints (EAJs) |
|
|
37 | (14) |
|
|
37 | (3) |
|
|
40 | (1) |
|
|
41 | (2) |
|
|
43 | (2) |
|
|
45 | (6) |
|
3.5 Representation of a Spherical Joint Using EAJs |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (5) |
4 Kinematics of Tree-Type Robotic Systems |
|
57 | (16) |
|
|
57 | (3) |
|
4.2 Intro-modular Velocity Constraints |
|
|
60 | (5) |
|
4.2.1 Presence of Multiple-DOF Joints |
|
|
62 | (2) |
|
4.2.2 An Illustration: A Spatial Double Pendulum |
|
|
64 | (1) |
|
4.3 Inter-modular Velocity Constraints |
|
|
65 | (3) |
|
|
68 | (4) |
|
|
68 | (2) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
5 Dynamics of Tree-Type Robotic Systems |
|
73 | (16) |
|
5.1 Dynamic Formulation Using the DeNOC Matrices |
|
|
73 | (5) |
|
5.1.1 NE Equations of Motion for a Serial Module |
|
|
73 | (3) |
|
5.1.2 NE Equations of Motion for a Tree-Type System |
|
|
76 | (1) |
|
5.1.3 Minimal-Order Equations of Motion |
|
|
76 | (1) |
|
5.1.4 Wrench due to External Force, wF |
|
|
77 | (1) |
|
5.2 Generalized Inertia Matrix (GIM) |
|
|
78 | (2) |
|
5.3 Module-Level Decomposition of the GIM |
|
|
80 | (3) |
|
|
83 | (2) |
|
|
85 | (3) |
|
|
85 | (1) |
|
|
86 | (2) |
|
5.6 Advantages of Modular Framework |
|
|
88 | (1) |
|
|
88 | (1) |
6 Recursive Dynamics for Fixed-Base Robotic Systems |
|
89 | (28) |
|
|
89 | (8) |
|
|
90 | (2) |
|
|
92 | (5) |
|
|
97 | (13) |
|
|
97 | (5) |
|
6.2.2 An Industrial Manipulator: KUKA KR5 Arc |
|
|
102 | (1) |
|
|
103 | (7) |
|
6.3 Computational Efficiency |
|
|
110 | (5) |
|
|
115 | (2) |
7 Recursive Dynamics for Floating-Base Systems |
|
117 | (38) |
|
|
118 | (10) |
|
|
119 | (5) |
|
|
124 | (4) |
|
|
128 | (9) |
|
|
129 | (4) |
|
|
133 | (4) |
|
|
137 | (7) |
|
|
144 | (3) |
|
7.5 Computational Efficiency |
|
|
147 | (6) |
|
|
153 | (2) |
8 Closed-Loop Systems |
|
155 | (18) |
|
8.1 Tree-Type Representation of Closed-Loop Systems |
|
|
155 | (1) |
|
|
156 | (2) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (3) |
|
|
161 | (4) |
|
8.5 3-RRR Parallel Manipulator |
|
|
165 | (4) |
|
|
169 | (4) |
9 Controlled Robotic Systems |
|
173 | (14) |
|
|
173 | (4) |
|
9.1.1 Computed-Torque Control |
|
|
174 | (2) |
|
9.1.2 Feedforward Control |
|
|
176 | (1) |
|
|
177 | (3) |
|
|
177 | (2) |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (4) |
|
|
185 | (2) |
10 Recursive Dynamics Simulator (ReDySim) |
|
187 | (18) |
|
|
187 | (1) |
|
|
188 | (12) |
|
|
188 | (5) |
|
|
193 | (7) |
|
10.3 Floating-Base Systems |
|
|
200 | (4) |
|
|
200 | (3) |
|
|
203 | (1) |
|
|
204 | (1) |
Appendices |
|
205 | (28) |
|
A Computational Complexity |
|
|
205 | (13) |
|
A.1 Elementary Computations |
|
|
205 | (1) |
|
A.2 A Vector in a Different Frame |
|
|
206 | (1) |
|
A.3 Matrix in a Different Frame |
|
|
207 | (2) |
|
A.4 Spatial Transformations |
|
|
209 | (2) |
|
|
211 | (1) |
|
A.6 Mass Matrix of a Composite Body |
|
|
212 | (3) |
|
A.7 Mass Matrix of an Articulated Body |
|
|
215 | (3) |
|
B Trajectory Generation for Legged Robots |
|
|
218 | (6) |
|
|
218 | (6) |
|
B.2 Quadruped and Hexapod |
|
|
224 | (1) |
|
|
224 | (4) |
|
C.1 Kinetic Energy (KE) and Potential Energy (PE) |
|
|
224 | (1) |
|
C.2 Work Done by Actuator and Energy Dissipation by Ground |
|
|
225 | (1) |
|
|
225 | (3) |
|
D Foot-Ground Interaction |
|
|
228 | (5) |
|
|
228 | (2) |
|
D.2 Multi-point and Whole Body Contacts |
|
|
230 | (3) |
References |
|
233 | (10) |
Index |
|
243 | |