Atjaunināt sīkdatņu piekrišanu

Dynamics of Tree-Type Robotic Systems 2013 ed. [Hardback]

  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
This book addresses dynamic modelling methodology and analyses of tree-type robotic systems, using kinematic modules and corresponding Decoupled Natural Orthogonal Complements, multiple-degrees-of-freedom-joints, recursive dynamics algorithms, and more.

This book addresses dynamic modelling methodology and analyses of tree-type robotic systems. Such analyses are required to visualize the motion of a system without really building it. The book contains novel treatment of the tree-type systems using concept of kinematic modules and the corresponding Decoupled Natural Orthogonal Complements (DeNOC), unified representation of the multiple-degrees-of freedom-joints, efficient recursive dynamics algorithms, and detailed dynamic analyses of several legged robots. The book will help graduate students, researchers and practicing engineers in applying their knowledge of dynamics for analysis of complex robotic systems. The knowledge contained in the book will help one in virtual testing of robot operation, trajectory planning and control.

Recenzijas

From the reviews:

This is a relatively compact, but yet detailed, book on modeling and analysis of tree-type robotic systems. Although the authors have prepared a concise, readable description of rather specialized topics, the reviewer believes the work is better suited for developmental researchers and engineers . The book quality, the illustrations, and the editing are all excellent. (Ronald L. Huston, Zentralblatt MATH, Vol. 1264, 2013)

1 Introduction 1(8)
1.1 Tree-Type Robotic Systems
2(1)
1.2 Dynamics
3(1)
1.3 Important Features of the Book
4(1)
1.4 Book Organization
5(4)
2 Dynamics of Robotic Systems 9(18)
2.1 Robotic Systems
9(6)
2.1.1 Serial Robots
9(3)
2.1.2 Tree-Type Robotic Hand
12(1)
2.1.3 Legged Robots
12(3)
2.2 Representations of Rotations
15(1)
2.2.1 Denavit-Hartenherg Parameters
15(1)
2.2.2 Euler-Angle-Joints
15(1)
2.3 Dynamic Modeling
16(4)
2.3.1 Equations of Motion
16(1)
2.3.2 Orthogonal Complements
17(1)
2.3.3 Other Formulations
18(1)
2.3.4 Open vs. Closed Chains
18(1)
2.3.5 Dynamics of Legged Robots
19(1)
2.4 Robot Dynamics
20(4)
2.4.1 Model-Based Control
20(2)
2.4.2 Recursive Algorithms
22(1)
2.4.3 Inverse Dynamics
22(1)
2.4.4 Forward Dynamics
22(2)
2.5 Summary
24(3)
3 Euler-Angle-Joints (EAJs) 27(30)
3.1 Euler Angles
28(1)
3.2 Denavit-Hartenherg (DH) Parameters
29(3)
3.3 Euler-Angle-Joints (EAJs)
32(5)
3.3.1 DH Parameterization of Euler Angles
33(1)
3.3.2 Elementary Rotations
33(2)
3.3.3 Composite Rotations
35(2)
3.4 Euler Angles Using Euler-Angle-Joints (EAJs)
37(14)
3.4.1 ZYZ-EAJs
37(3)
3.4.2 ZXZ-EAJs
40(1)
3.4.3 ZXY-EAJs
41(2)
3.4.4 XYX-EAJs
43(2)
3.4.5 Other-EAJs
45(6)
3.5 Representation of a Spherical Joint Using EAJs
51(1)
3.6 Singularity in EAJs
51(1)
3.7 Multiple-DOF Joints
52(1)
3.8 Summary
52(5)
4 Kinematics of Tree-Type Robotic Systems 57(16)
4.1 Kinematic Modules
57(3)
4.2 Intro-modular Velocity Constraints
60(5)
4.2.1 Presence of Multiple-DOF Joints
62(2)
4.2.2 An Illustration: A Spatial Double Pendulum
64(1)
4.3 Inter-modular Velocity Constraints
65(3)
4.4 Examples
68(4)
4.4.1 A Robotic Gripper
68(2)
4.4.2 A Planar Biped
70(1)
4.4.3 A Spatial Biped
71(1)
4.5 Summary
72(1)
5 Dynamics of Tree-Type Robotic Systems 73(16)
5.1 Dynamic Formulation Using the DeNOC Matrices
73(5)
5.1.1 NE Equations of Motion for a Serial Module
73(3)
5.1.2 NE Equations of Motion for a Tree-Type System
76(1)
5.1.3 Minimal-Order Equations of Motion
76(1)
5.1.4 Wrench due to External Force, wF
77(1)
5.2 Generalized Inertia Matrix (GIM)
78(2)
5.3 Module-Level Decomposition of the GIM
80(3)
5.4 Inverse of the GIM
83(2)
5.5 Examples
85(3)
5.5.1 A Robotic Gripper
85(1)
5.5.2 A Biped
86(2)
5.6 Advantages of Modular Framework
88(1)
5.7 Summary
88(1)
6 Recursive Dynamics for Fixed-Base Robotic Systems 89(28)
6.1 Recursive Dynamics
89(8)
6.1.1 Inverse Dynamics
90(2)
6.1.2 Forward Dynamics
92(5)
6.2 Applications
97(13)
6.2.1 Robotic Gripper
97(5)
6.2.2 An Industrial Manipulator: KUKA KR5 Arc
102(1)
6.2.3 A Biped
103(7)
6.3 Computational Efficiency
110(5)
6.4 Summary
115(2)
7 Recursive Dynamics for Floating-Base Systems 117(38)
7.1 Recursive Dynamics
118(10)
7.1.1 Inverse Dynamics
119(5)
7.1.2 Forward Dynamics
124(4)
7.2 Biped
128(9)
7.2.1 A Planar Biped
129(4)
7.2.2 Spatial Biped
133(4)
7.3 Quadruped
137(7)
7.4 Hexapod
144(3)
7.5 Computational Efficiency
147(6)
7.6 Summary
153(2)
8 Closed-Loop Systems 155(18)
8.1 Tree-Type Representation of Closed-Loop Systems
155(1)
8.2 Dynamic Formulation
156(2)
8.2.1 Inverse Dynamics
156(1)
8.2.2 Forward Dynamics
157(1)
8.3 Four-Bar Mechanism
158(3)
8.4 A Robotic Leg
161(4)
8.5 3-RRR Parallel Manipulator
165(4)
8.6 Summary
169(4)
9 Controlled Robotic Systems 173(14)
9.1 Model-Based Control
173(4)
9.1.1 Computed-Torque Control
174(2)
9.1.2 Feedforward Control
176(1)
9.2 Biped
177(3)
9.2.1 Planar Biped
177(2)
9.2.2 Spatial Biped
179(1)
9.3 Quadruped
180(1)
9.4 Hexapod
181(4)
9.5 Summary
185(2)
10 Recursive Dynamics Simulator (ReDySim) 187(18)
10.1 How to Use ReDySim?
187(1)
10.2 Fixed-Base Systems
188(12)
10.2.1 Inverse Dynamics
188(5)
10.2.2 Forward Dynamics
193(7)
10.3 Floating-Base Systems
200(4)
10.3.1 Inverse Dynamics
200(3)
10.3.2 Forward Dynamics
203(1)
10.4 Summary
204(1)
Appendices 205(28)
A Computational Complexity
205(13)
A.1 Elementary Computations
205(1)
A.2 A Vector in a Different Frame
206(1)
A.3 Matrix in a Different Frame
207(2)
A.4 Spatial Transformations
209(2)
A.5 Special Computations
211(1)
A.6 Mass Matrix of a Composite Body
212(3)
A.7 Mass Matrix of an Articulated Body
215(3)
B Trajectory Generation for Legged Robots
218(6)
B.1 Biped
218(6)
B.2 Quadruped and Hexapod
224(1)
C Energy Balance
224(4)
C.1 Kinetic Energy (KE) and Potential Energy (PE)
224(1)
C.2 Work Done by Actuator and Energy Dissipation by Ground
225(1)
C.3 Energy Balance
225(3)
D Foot-Ground Interaction
228(5)
D.1 Ground Models
228(2)
D.2 Multi-point and Whole Body Contacts
230(3)
References 233(10)
Index 243