Organizers |
|
ix | |
Lecturers |
|
xi | |
Participants |
|
xiii | |
Preface |
|
xv | |
|
|
1 | (44) |
|
|
|
5 | (5) |
|
|
6 | (1) |
|
The electromagnetism chain |
|
|
6 | (1) |
|
A short history of magnetohydrodynamics |
|
|
7 | (3) |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
12 | (4) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
Balance of internal energy |
|
|
14 | (1) |
|
|
14 | (1) |
|
Gross Heat budget for the Earth's core |
|
|
15 | (1) |
|
Joule versus viscous dissipation |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
16 | (6) |
|
|
16 | (1) |
|
|
17 | (1) |
|
Zero dimensionless parameter |
|
|
18 | (1) |
|
One dimensionless parameter |
|
|
18 | (1) |
|
Two dimensionless parameters |
|
|
19 | (2) |
|
Three dimensionless parameters |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (2) |
|
Quasi-linear approximation |
|
|
22 | (1) |
|
Quasi-static approximation |
|
|
23 | (1) |
|
A quick look at turbulence in the Earth core |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
24 | (6) |
|
|
25 | (1) |
|
Two dimensional core flow |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
Skin effect/field expulsion |
|
|
27 | (1) |
|
|
28 | (2) |
|
|
30 | (1) |
|
|
30 | (7) |
|
|
30 | (1) |
|
Small magnetic Reynolds number |
|
|
30 | (3) |
|
Kinematic dynamo threshold |
|
|
33 | (1) |
|
|
33 | (1) |
|
Dissipative energy stability |
|
|
33 | (2) |
|
Stability of non-dissipative MHD |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
38 | (5) |
|
|
38 | (1) |
|
Initial evolution of MHD turbulence |
|
|
38 | (2) |
|
|
40 | (1) |
|
|
41 | (1) |
|
Turbulence in Hartmann layers |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
43 | (2) |
|
|
45 | (92) |
|
|
|
51 | (15) |
|
Maxwell and pre-Maxwell equations |
|
|
51 | (2) |
|
Integral form of the MHD equations |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
Electromagnetic theory in a moving frame |
|
|
54 | (2) |
|
Ohm's law, induction equation and boundary conditions |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
Nature of the induction equation: Magnetic Reynolds number |
|
|
58 | (2) |
|
The kinematic dynamo problem |
|
|
60 | (1) |
|
Vector potential, toroidal and poloidal decomposition |
|
|
61 | (1) |
|
|
61 | (1) |
|
Toroidal-poloidal decomposition |
|
|
61 | (1) |
|
Axisymmetric field decomposition |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (2) |
|
Working kinematic dynamos |
|
|
66 | (16) |
|
Minimum Rm for dynamo action |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
Original Faraday disc dynamo (Fig. 2a) |
|
|
67 | (1) |
|
Homopolar self-excited dynamo (Fig. 2b) |
|
|
68 | (1) |
|
Moffatt's segmented homopolar dynamo (Fig. 3) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (3) |
|
Ponomarenko dynamo results |
|
|
73 | (1) |
|
Smooth Ponomarenko dynamo |
|
|
73 | (1) |
|
|
74 | (2) |
|
Large Rm G.O. Roberts dynamo |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (3) |
|
|
80 | (1) |
|
More specimens from the dynamo zoo! |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
Lowes-Wilkinson dynamo experiment |
|
|
81 | (1) |
|
|
82 | (11) |
|
Averaging the dynamo equations |
|
|
82 | (1) |
|
Mean field induction equation |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
Evaluation of (u' x B'), a closer look |
|
|
85 | (1) |
|
Tensor representation of ε |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
88 | (1) |
|
Connection with G.O. Roberts dynamo |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
Axisymmetric mean field dynamos |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (10) |
|
|
94 | (1) |
|
The stretch-twist-fold dynamo |
|
|
95 | (1) |
|
Stretching and folding in 2D |
|
|
96 | (1) |
|
Baker's maps and stretch, fold, shear |
|
|
96 | (1) |
|
|
97 | (1) |
|
Stretch-fold-shear in G.O. Roberts dynamo |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
100 | (1) |
|
|
100 | (1) |
|
Time dependent flow fields |
|
|
101 | (2) |
|
|
103 | (10) |
|
Basic ideas in nonlinear dynamos |
|
|
103 | (1) |
|
|
104 | (1) |
|
Stellar dynamo saturation mechanisms |
|
|
104 | (1) |
|
Modelling saturation mechanisms |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
α-quenching: small or large scale? |
|
|
106 | (1) |
|
α-quenching: magnetic helicity |
|
|
107 | (1) |
|
|
107 | (1) |
|
Saturation in rapidly rotating systems |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
Dynamo models and Taylor's constraint |
|
|
111 | (1) |
|
Equipartition in rapid rotation? |
|
|
111 | (1) |
|
|
111 | (1) |
|
Dynamo saturation in experiments |
|
|
112 | (1) |
|
Numerical methods for dynamos |
|
|
113 | (9) |
|
The pseudo-spectral method for a convection-driven plane layer dynamo |
|
|
113 | (1) |
|
Dimensionless plane layer equations |
|
|
114 | (1) |
|
Toroidal-poloidal expansion |
|
|
114 | (1) |
|
Toroidal-poloidal equations |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (1) |
|
Methods for kinematic dynamos |
|
|
118 | (1) |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
119 | (1) |
|
Dynamical similarity model |
|
|
120 | (1) |
|
|
120 | (1) |
|
Spherical geometry: spectral methods |
|
|
121 | (1) |
|
Spherical geometry: finite volume/element methods |
|
|
121 | (1) |
|
Convection driven plane layer dynamos |
|
|
122 | (10) |
|
|
122 | (2) |
|
Weak field---strong field branches |
|
|
124 | (1) |
|
|
124 | (1) |
|
Meneguzzi and Pouquet results |
|
|
124 | (1) |
|
|
124 | (1) |
|
Jones and Roberts results |
|
|
125 | (2) |
|
|
127 | (1) |
|
Stellmach and Hansen model |
|
|
128 | (2) |
|
Cattaneo and Hughes 2006 model |
|
|
130 | (2) |
|
|
132 | (5) |
|
|
137 | (114) |
|
|
Planetary dynamos introduction |
|
|
143 | (12) |
|
Planetary magnetic fields |
|
|
143 | (1) |
|
Definition of a planetary magnetic field |
|
|
143 | (2) |
|
What can be learned from planetary magnetic fields? |
|
|
145 | (1) |
|
Internal sources for planetary magnetic fields |
|
|
145 | (1) |
|
Rationale for the self-sustaining fluid dynamo mechanism for planetary magnetism |
|
|
146 | (1) |
|
Planet interior classification |
|
|
146 | (1) |
|
How to make a self-sustaining planetary dynamo |
|
|
147 | (3) |
|
|
150 | (2) |
|
|
152 | (2) |
|
Implications for planetary dynamos |
|
|
154 | (1) |
|
|
155 | (1) |
|
Planetary dynamos, a short tour |
|
|
156 | (23) |
|
Planetary magnetic fields: comparison parameters |
|
|
156 | (3) |
|
Internal magnetic field intensity |
|
|
159 | (1) |
|
Sketches of individual planetary dynamos |
|
|
159 | (1) |
|
|
159 | (4) |
|
|
163 | (1) |
|
|
163 | (4) |
|
|
167 | (2) |
|
Why did the Martian dynamo die? |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
170 | (2) |
|
|
172 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
Comparison of the magnetic state of the Galilean satellites |
|
|
176 | (1) |
|
|
177 | (1) |
|
Outstanding questions in planetary dynamo theory |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
180 | (14) |
|
The structure of the Earth's core |
|
|
180 | (2) |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
183 | (4) |
|
The adiabatic temperature gradient in the core |
|
|
187 | (1) |
|
Heat conduction and the core adiabat |
|
|
188 | (1) |
|
Adiabatic cooling of the core |
|
|
188 | (1) |
|
Heterogeneity in the lower mantle |
|
|
189 | (1) |
|
Dynamical interpretations of D'' |
|
|
189 | (1) |
|
The surprising inner core |
|
|
190 | (2) |
|
Summary of deep Earth structure |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | (1) |
|
Composition and physical properties of the core |
|
|
194 | (12) |
|
|
194 | (2) |
|
The phase diagram of iron |
|
|
196 | (1) |
|
Light elements in the core |
|
|
197 | (1) |
|
Thermal significance of light elements in the core |
|
|
198 | (1) |
|
Constraints on the deep Earth geotherm |
|
|
199 | (1) |
|
Thermal boundary conditions at the cmb |
|
|
200 | (1) |
|
Thermal and chemical conditions near the inner core boundary |
|
|
201 | (2) |
|
Causes inner core anisotropy |
|
|
203 | (1) |
|
Radioactivity in the core |
|
|
203 | (1) |
|
Transport properties in the core |
|
|
204 | (1) |
|
|
204 | (1) |
|
Thermal and electrical conductivity |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
206 | (1) |
|
Energetics of the core and the geodynamo |
|
|
207 | (22) |
|
Growth of the solid inner core |
|
|
207 | (1) |
|
Chemical evolution of the core |
|
|
208 | (1) |
|
Gravitational dynamo mechanism |
|
|
208 | (2) |
|
Light element transport in the outer core |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
212 | (5) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
218 | (4) |
|
Dynamo efficiency vs inner core radius |
|
|
222 | (1) |
|
Estimating the Ohmic dissipation in the core |
|
|
222 | (1) |
|
Ohmic dissipation estimated from the core field structure |
|
|
223 | (1) |
|
Ohmic dissipation estimated from numerical dynamos |
|
|
223 | (2) |
|
A simple evolution model of the core |
|
|
225 | (1) |
|
Detailed thermal evolution modeling |
|
|
225 | (2) |
|
|
227 | (2) |
|
|
229 | (1) |
|
Planetary dynamo scaling laws |
|
|
230 | (9) |
|
|
233 | (1) |
|
|
233 | (1) |
|
Scaling the dynamo equations |
|
|
234 | (1) |
|
Scaling with numerical dynamo models |
|
|
235 | (1) |
|
|
236 | (3) |
|
|
239 | (1) |
|
Gravitational and tomographic dynamo examples |
|
|
240 | (9) |
|
|
240 | (1) |
|
Goals for numerical models of the geodynamo |
|
|
240 | (1) |
|
Gravitational dynamo model equations |
|
|
241 | (3) |
|
Behavior of chaotic gravitational dynamos |
|
|
244 | (1) |
|
Tomographic dynamo models |
|
|
244 | (5) |
|
|
249 | (2) |
|
|
251 | (50) |
|
|
|
|
255 | (1) |
|
Observations of astrophysical magnetic fields |
|
|
256 | (9) |
|
|
256 | (2) |
|
Synchrotron emission and Faraday rotation |
|
|
258 | (2) |
|
|
260 | (1) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (3) |
|
|
265 | (5) |
|
|
266 | (1) |
|
|
267 | (1) |
|
Turbulence and multi-phase structure |
|
|
267 | (2) |
|
|
269 | (1) |
|
|
270 | (1) |
|
The necessity of dynamo action |
|
|
270 | (2) |
|
|
272 | (1) |
|
Perturbation solutions for mean-field dynamos |
|
|
273 | (11) |
|
|
273 | (1) |
|
|
274 | (1) |
|
The perturbation expansion |
|
|
275 | (4) |
|
|
279 | (3) |
|
Diffusion in mean-field dynamos |
|
|
282 | (2) |
|
Turbulent magnetic fields in galaxies and galaxy clusters |
|
|
284 | (11) |
|
|
284 | (2) |
|
|
286 | (4) |
|
Turbulence in galaxy clusters: three evolutionary stages |
|
|
290 | (1) |
|
The epoch of major mergers |
|
|
290 | (1) |
|
|
291 | (1) |
|
Turbulent wakes of subclusters and galaxies |
|
|
292 | (2) |
|
Magnetic fields in the intracluster gas |
|
|
294 | (1) |
|
Interstellar turbulent magnetic fields |
|
|
294 | (1) |
|
|
295 | (1) |
|
|
296 | (5) |
|
|
301 | (58) |
|
|
Introduction: turbulence AND dynamo? |
|
|
305 | (1) |
|
|
305 | (25) |
|
|
305 | (2) |
|
Spectra and number of degrees of freedom |
|
|
307 | (1) |
|
|
307 | (3) |
|
|
310 | (1) |
|
|
311 | (3) |
|
|
314 | (2) |
|
|
316 | (1) |
|
|
317 | (2) |
|
Stochastic description of turbulence |
|
|
319 | (5) |
|
|
324 | (1) |
|
|
324 | (1) |
|
|
325 | (1) |
|
|
326 | (1) |
|
Fluctuations modifications |
|
|
327 | (1) |
|
|
328 | (2) |
|
|
330 | (27) |
|
|
330 | (1) |
|
|
330 | (1) |
|
|
330 | (1) |
|
Linear theory: instability |
|
|
331 | (1) |
|
|
331 | (1) |
|
|
331 | (2) |
|
|
333 | (8) |
|
|
341 | (1) |
|
|
342 | (1) |
|
Non-linear dynamo: saturation and transport |
|
|
343 | (1) |
|
Weakly non-linear: saturation |
|
|
344 | (3) |
|
|
347 | (7) |
|
|
354 | (3) |
|
|
357 | (2) |
|
Numerical modeling of liquid metal dynamo experiments |
|
|
359 | (24) |
|
|
|
363 | (1) |
|
|
363 | (1) |
|
|
364 | (3) |
|
The periodic box numerical experiment |
|
|
364 | (1) |
|
|
364 | (1) |
|
|
365 | (1) |
|
|
366 | (1) |
|
Turbulence and subgrid modeling |
|
|
366 | (1) |
|
|
367 | (2) |
|
|
369 | (4) |
|
Static or turbulent kinematic dynamo |
|
|
369 | (1) |
|
|
370 | (3) |
|
|
373 | (4) |
|
|
373 | (2) |
|
On-Off intermittency dynamo |
|
|
375 | (2) |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
378 | (5) |
|
Taylor's constraint and torsional oscillations |
|
|
383 | (20) |
|
|
|
387 | (1) |
|
|
387 | (5) |
|
|
392 | (3) |
|
Taylor's constraint and numerical models of the geodynamo |
|
|
395 | (2) |
|
Observations of rigid flow and torsional oscillations |
|
|
397 | (2) |
|
Conclusions and future direction |
|
|
399 | (1) |
|
|
400 | (3) |
|
Waves in the presence of magnetic fields, rotation and convection |
|
|
403 | (48) |
|
|
|
407 | (4) |
|
Some motivating thoughts concerning the study of waves |
|
|
407 | (2) |
|
Historical sketch and literature survey |
|
|
409 | (2) |
|
Inertial waves and intrinsic stability due to rotation |
|
|
411 | (2) |
|
The Coriolis force, vortex lines and Inertial oscillations in rotating fluids |
|
|
411 | (1) |
|
The Inertial wave equation |
|
|
411 | (1) |
|
Inertial wave dispersion relation and properties |
|
|
412 | (1) |
|
Alfven waves and magnetic tension |
|
|
413 | (3) |
|
The Lorentz force, magnetic field lines and Magneto-Inertial oscillations |
|
|
413 | (1) |
|
|
414 | (2) |
|
Alfven wave dispersion relation and properties |
|
|
416 | (1) |
|
Magnetic Coriolis (MC) waves |
|
|
416 | (4) |
|
Force balances in rapidly-rotating, hydromagnetic fluids |
|
|
416 | (1) |
|
|
417 | (1) |
|
MC wave dispersion relation and properties |
|
|
418 | (2) |
|
Magnetic Archimedes Coriolis (MAC) waves |
|
|
420 | (5) |
|
Influence of density stratification and convective instability |
|
|
420 | (4) |
|
|
424 | (1) |
|
MAC waves in spherical geometry |
|
|
425 | (6) |
|
Quasi-geostrophic (QG) models of MAC waves |
|
|
425 | (5) |
|
MAC waves in full sphere geometry |
|
|
430 | (1) |
|
Limitations of linear models and towards nonlinear models |
|
|
431 | (4) |
|
|
435 | (2) |
|
Waves in numerical dynamo simulations |
|
|
437 | (1) |
|
Concluding remarks on waves in geophysical and astrophysical systems |
|
|
438 | (1) |
|
Appendix A. Hide's β-plane model of MC Rossby waves |
|
|
439 | (2) |
|
Appendix B. Malkus' model of MC waves in a full sphere |
|
|
441 | (4) |
|
Appendix C. Busse and Soward's QG model of MAC waves |
|
|
445 | (2) |
|
|
447 | (4) |
|
Dynamos of the ice giants |
|
|
451 | |
|
|
|
455 | |
|
|
459 | |
|
Insights from numerical dynamo models |
|
|
460 | |
|
Conclusions and future prospects |
|
|
462 | |
|
|
463 | |