Atjaunināt sīkdatņu piekrišanu

Dynamos: Lecture Notes of the Les Houches Summer School 2007, Volume 88 [Mīkstie vāki]

Volume editor (Maison des Géosciences, LGIT, Grenoble, France), Volume editor (Laboratoire de Physique Théorique et Hautes Energi, Université Pierre et Marie Curie, Paris, France)
  • Formāts: Paperback / softback, 496 pages, height x width: 229x152 mm, weight: 910 g
  • Sērija : Les Houches
  • Izdošanas datums: 13-Aug-2008
  • Izdevniecība: Elsevier Science Ltd
  • ISBN-10: 0080548121
  • ISBN-13: 9780080548128
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 76,81 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 496 pages, height x width: 229x152 mm, weight: 910 g
  • Sērija : Les Houches
  • Izdošanas datums: 13-Aug-2008
  • Izdevniecība: Elsevier Science Ltd
  • ISBN-10: 0080548121
  • ISBN-13: 9780080548128
Citas grāmatas par šo tēmu:
This book is a collection of lectures given in July 2007 at the Les Houches Summer School on "Dynamos".

• Provides a pedagogical introduction to topics in Dynamos
• Addresses each topic from the basis to the most recent developments
• Covers the lectures by internationally-renowned and leading experts
Organizers ix
Lecturers xi
Participants xiii
Preface xv
Fundamentals of MHD
1(44)
Thierry Alboussiere
A short history of MHD
5(5)
The hydrodynamics chain
6(1)
The electromagnetism chain
6(1)
A short history of magnetohydrodynamics
7(3)
Governing equations
10(2)
References
12(1)
Energetics
12(4)
Mechanical energy
12(1)
Magnetic energy
13(1)
Balance of total energy
13(1)
Balance of internal energy
14(1)
Entropy balance
14(1)
Gross Heat budget for the Earth's core
15(1)
Joule versus viscous dissipation
15(1)
References
16(1)
Dimensionless parameters
16(6)
Fundamental units
16(1)
Dimensionless numbers
17(1)
Zero dimensionless parameter
18(1)
One dimensionless parameter
18(1)
Two dimensionless parameters
19(2)
Three dimensionless parameters
21(1)
References
22(1)
MHD approximations
22(2)
Quasi-linear approximation
22(1)
Quasi-static approximation
23(1)
A quick look at turbulence in the Earth core
24(1)
Remark
24(1)
References
24(1)
MHD physical effects
24(6)
Pseudo-diffusion
25(1)
Two dimensional core flow
25(1)
Hartmann layers
26(1)
Parallel layers
26(1)
Alfven waves
27(1)
Skin effect/field expulsion
27(1)
Ideal MHD
28(2)
References
30(1)
Stability of MHD flows
30(7)
Linear stability
30(1)
Small magnetic Reynolds number
30(3)
Kinematic dynamo threshold
33(1)
Energetic stability
33(1)
Dissipative energy stability
33(2)
Stability of non-dissipative MHD
35(2)
References
37(1)
MHD turbulence
38(5)
Elsasser equations
38(1)
Initial evolution of MHD turbulence
38(2)
Strong MHD turbulence
40(1)
Weak MHD turbulence
41(1)
Turbulence in Hartmann layers
41(1)
A global picture
42(1)
References
43(2)
Dynamo theory
45(92)
Chris A. Jones
Kinematic dynamo theory
51(15)
Maxwell and pre-Maxwell equations
51(2)
Integral form of the MHD equations
53(1)
Stokes' theorem
53(1)
Potential fields
53(1)
Faraday's law
54(1)
Electromagnetic theory in a moving frame
54(2)
Ohm's law, induction equation and boundary conditions
56(1)
Lorentz force
56(1)
Induction equation
57(1)
Boundary conditions
57(1)
Nature of the induction equation: Magnetic Reynolds number
58(2)
The kinematic dynamo problem
60(1)
Vector potential, toroidal and poloidal decomposition
61(1)
Vector potential
61(1)
Toroidal-poloidal decomposition
61(1)
Axisymmetric field decomposition
62(1)
Symmetry
63(1)
Free decay modes
63(1)
The anti-dynamo theorems
64(2)
Working kinematic dynamos
66(16)
Minimum Rm for dynamo action
66(1)
Childress bound
66(1)
Backus bound
67(1)
Faraday disc dynamos
67(1)
Original Faraday disc dynamo (Fig. 2a)
67(1)
Homopolar self-excited dynamo (Fig. 2b)
68(1)
Moffatt's segmented homopolar dynamo (Fig. 3)
69(1)
Homopolar disc equations
69(1)
Ponomarenko dynamo
70(3)
Ponomarenko dynamo results
73(1)
Smooth Ponomarenko dynamo
73(1)
G.O. Roberts dynamo
74(2)
Large Rm G.O. Roberts dynamo
76(1)
Other periodic dynamos
76(1)
Spherical dynamos
77(1)
Dudley and James dynamos
77(3)
Braginsky limit
80(1)
More specimens from the dynamo zoo!
80(1)
Gailitis dynamo
80(1)
Herzenberg dynamo
81(1)
Lowes-Wilkinson dynamo experiment
81(1)
Mean field dynamo theory
82(11)
Averaging the dynamo equations
82(1)
Mean field induction equation
83(1)
Evaluation of (u' x B')
83(1)
Validity of MFDT
84(1)
The averaging process
84(1)
Evaluation of (u' x B'), a closer look
85(1)
Tensor representation of ε
86(1)
First order smoothing
87(1)
Connection with helicity
88(1)
Connection with G.O. Roberts dynamo
88(1)
Parker loop mechanism
89(1)
Joy's law
90(1)
Axisymmetric mean field dynamos
90(1)
The Omega-effect
90(1)
Dynamo waves
91(1)
α2 dynamos
91(1)
Spherical αω dynamos
92(1)
Fast and slow dynamos
93(10)
Magnetic helicity
94(1)
The stretch-twist-fold dynamo
95(1)
Stretching and folding in 2D
96(1)
Baker's maps and stretch, fold, shear
96(1)
Stretch-fold-shear, SFS
97(1)
Stretch-fold-shear in G.O. Roberts dynamo
98(1)
ABC dynamos
99(1)
Stretching properties
100(1)
Line stretching
100(1)
Flux growth rate
100(1)
Time dependent flow fields
101(2)
Nonlinear dynamos
103(10)
Basic ideas in nonlinear dynamos
103(1)
Dynamical regimes
104(1)
Stellar dynamo saturation mechanisms
104(1)
Modelling saturation mechanisms
105(1)
A truncated system
105(1)
α-quenching
106(1)
α-quenching: small or large scale?
106(1)
α-quenching: magnetic helicity
107(1)
β-quenching
107(1)
Saturation in rapidly rotating systems
108(1)
Busse rolls
108(1)
J.B. Taylor's constraint
109(1)
Elsasser number
110(1)
Dynamo models and Taylor's constraint
111(1)
Equipartition in rapid rotation?
111(1)
Dissipation time
111(1)
Dynamo saturation in experiments
112(1)
Numerical methods for dynamos
113(9)
The pseudo-spectral method for a convection-driven plane layer dynamo
113(1)
Dimensionless plane layer equations
114(1)
Toroidal-poloidal expansion
114(1)
Toroidal-poloidal equations
115(1)
Fourier decomposition
115(1)
Boundary conditions
115(1)
Collocation points
116(1)
Pseudo-spectral method
117(1)
Methods for kinematic dynamos
118(1)
Hyperdiffusion
118(1)
LES models
119(1)
Similarity model
119(1)
Dynamical similarity model
120(1)
Finite volume methods
120(1)
Spherical geometry: spectral methods
121(1)
Spherical geometry: finite volume/element methods
121(1)
Convection driven plane layer dynamos
122(10)
Childress-Soward dynamo
122(2)
Weak field---strong field branches
124(1)
Numerical simulations
124(1)
Meneguzzi and Pouquet results
124(1)
St. Pierre's dynamo
124(1)
Jones and Roberts results
125(2)
Rotvig and Jones results
127(1)
Stellmach and Hansen model
128(2)
Cattaneo and Hughes 2006 model
130(2)
References
132(5)
Planetary magnetism
137(114)
Peter Olson
Planetary dynamos introduction
143(12)
Planetary magnetic fields
143(1)
Definition of a planetary magnetic field
143(2)
What can be learned from planetary magnetic fields?
145(1)
Internal sources for planetary magnetic fields
145(1)
Rationale for the self-sustaining fluid dynamo mechanism for planetary magnetism
146(1)
Planet interior classification
146(1)
How to make a self-sustaining planetary dynamo
147(3)
Energy flow
150(2)
Experimental parameters
152(2)
Implications for planetary dynamos
154(1)
References
155(1)
Planetary dynamos, a short tour
156(23)
Planetary magnetic fields: comparison parameters
156(3)
Internal magnetic field intensity
159(1)
Sketches of individual planetary dynamos
159(1)
Mercury
159(4)
Venus
163(1)
Earth
163(4)
Mars
167(2)
Why did the Martian dynamo die?
169(1)
Big questions
170(1)
Jupiter
170(2)
Atmosphere
172(1)
Deep interior
172(1)
Big questions
173(1)
Saturn
174(1)
Uranus and Neptune
174(1)
Ganymede
175(1)
Comparison of the magnetic state of the Galilean satellites
176(1)
The ancient Lunar dynamo
177(1)
Outstanding questions in planetary dynamo theory
178(1)
References
179(1)
Deep Earth structure
180(14)
The structure of the Earth's core
180(2)
Interpretations
182(1)
Interpretations
182(1)
PREM radial Earth model
183(4)
The adiabatic temperature gradient in the core
187(1)
Heat conduction and the core adiabat
188(1)
Adiabatic cooling of the core
188(1)
Heterogeneity in the lower mantle
189(1)
Dynamical interpretations of D''
189(1)
The surprising inner core
190(2)
Summary of deep Earth structure
192(1)
Cores in other planets
193(1)
References
194(1)
Composition and physical properties of the core
194(12)
Evidence from meteorites
194(2)
The phase diagram of iron
196(1)
Light elements in the core
197(1)
Thermal significance of light elements in the core
198(1)
Constraints on the deep Earth geotherm
199(1)
Thermal boundary conditions at the cmb
200(1)
Thermal and chemical conditions near the inner core boundary
201(2)
Causes inner core anisotropy
203(1)
Radioactivity in the core
203(1)
Transport properties in the core
204(1)
Viscosity
204(1)
Thermal and electrical conductivity
204(1)
Reference tables
205(1)
References
206(1)
Energetics of the core and the geodynamo
207(22)
Growth of the solid inner core
207(1)
Chemical evolution of the core
208(1)
Gravitational dynamo mechanism
208(2)
Light element transport in the outer core
210(1)
Light element dynamics
211(1)
Geodynamo efficiency
212(5)
Inner core formation
217(1)
Energy considerations
217(1)
Implications
218(1)
Dynamo energetics
218(4)
Dynamo efficiency vs inner core radius
222(1)
Estimating the Ohmic dissipation in the core
222(1)
Ohmic dissipation estimated from the core field structure
223(1)
Ohmic dissipation estimated from numerical dynamos
223(2)
A simple evolution model of the core
225(1)
Detailed thermal evolution modeling
225(2)
Summary of results
227(2)
References
229(1)
Planetary dynamo scaling laws
230(9)
Power law scaling
233(1)
Similarity relationships
233(1)
Scaling the dynamo equations
234(1)
Scaling with numerical dynamo models
235(1)
Scaling results
236(3)
References
239(1)
Gravitational and tomographic dynamo examples
240(9)
Introduction
240(1)
Goals for numerical models of the geodynamo
240(1)
Gravitational dynamo model equations
241(3)
Behavior of chaotic gravitational dynamos
244(1)
Tomographic dynamo models
244(5)
References
249(2)
Astrophysical dynamos
251(50)
Anvar Shukurov
Dmitry Sokoloff
Introduction
255(1)
Observations of astrophysical magnetic fields
256(9)
Zeeman splitting
256(2)
Synchrotron emission and Faraday rotation
258(2)
Results of observations
260(1)
The Sun and stars
260(1)
Spiral galaxies
261(1)
Galaxy clusters
262(3)
Astrophysical flows
265(5)
Solar convection zone
266(1)
Spiral galaxies
267(1)
Turbulence and multi-phase structure
267(2)
Galactic rotation
269(1)
Galaxy clusters
270(1)
The necessity of dynamo action
270(2)
Dynamo parameters
272(1)
Perturbation solutions for mean-field dynamos
273(11)
Disc dynamos
273(1)
Free decay modes
274(1)
The perturbation expansion
275(4)
Spherical shell dynamos
279(3)
Diffusion in mean-field dynamos
282(2)
Turbulent magnetic fields in galaxies and galaxy clusters
284(11)
The fluctuation dynamo
284(2)
Shapefinders
286(4)
Turbulence in galaxy clusters: three evolutionary stages
290(1)
The epoch of major mergers
290(1)
Decaying turbulence
291(1)
Turbulent wakes of subclusters and galaxies
292(2)
Magnetic fields in the intracluster gas
294(1)
Interstellar turbulent magnetic fields
294(1)
Conclusions
295(1)
References
296(5)
Turbulence and dynamo
301(58)
Berengere Dubrulle
Introduction: turbulence AND dynamo?
305(1)
Turbulence
305(25)
Generalities
305(2)
Spectra and number of degrees of freedom
307(1)
Observations
307(3)
Mean-flow
310(1)
Fluctuations
311(3)
Transport properties
314(2)
Theories of turbulence
316(1)
Dimensional analysis
317(2)
Stochastic description of turbulence
319(5)
Influence of rotation
324(1)
Generalities
324(1)
Rotating von Karman flow
325(1)
Mean-flow modifications
326(1)
Fluctuations modifications
327(1)
Transport modification
328(2)
Dynamo
330(27)
Generalities
330(1)
Equations
330(1)
Conservation laws
330(1)
Linear theory: instability
331(1)
Laminar vs turbulent
331(1)
Laminar dynamo
331(2)
Turbulent dynamo
333(8)
Numerical simulations
341(1)
Experiments
342(1)
Non-linear dynamo: saturation and transport
343(1)
Weakly non-linear: saturation
344(3)
Non-linear: saturation
347(7)
Transport
354(3)
References
357(2)
Numerical modeling of liquid metal dynamo experiments
359(24)
Yannick Ponty
Preamble
363(1)
Introduction
363(1)
Numerical method
364(3)
The periodic box numerical experiment
364(1)
Fundamentals equations
364(1)
Non dimensional numbers
365(1)
Numerical schemes
366(1)
Turbulence and subgrid modeling
366(1)
Magnetic induction
367(2)
Linear dynamo onset
369(4)
Static or turbulent kinematic dynamo
369(1)
Taylor-Green dynamo
370(3)
Non linear behavior
373(4)
Subcritical dynamo
373(2)
On-Off intermittency dynamo
375(2)
Perspective
377(1)
Acknowledgements
378(1)
References
378(5)
Taylor's constraint and torsional oscillations
383(20)
Mathieu Dumberry
Introduction
387(1)
Taylor's constraint
387(5)
Torsional oscillations
392(3)
Taylor's constraint and numerical models of the geodynamo
395(2)
Observations of rigid flow and torsional oscillations
397(2)
Conclusions and future direction
399(1)
References
400(3)
Waves in the presence of magnetic fields, rotation and convection
403(48)
Christopher C. Finlay
Introduction
407(4)
Some motivating thoughts concerning the study of waves
407(2)
Historical sketch and literature survey
409(2)
Inertial waves and intrinsic stability due to rotation
411(2)
The Coriolis force, vortex lines and Inertial oscillations in rotating fluids
411(1)
The Inertial wave equation
411(1)
Inertial wave dispersion relation and properties
412(1)
Alfven waves and magnetic tension
413(3)
The Lorentz force, magnetic field lines and Magneto-Inertial oscillations
413(1)
The Alfven wave equation
414(2)
Alfven wave dispersion relation and properties
416(1)
Magnetic Coriolis (MC) waves
416(4)
Force balances in rapidly-rotating, hydromagnetic fluids
416(1)
The MC wave equation
417(1)
MC wave dispersion relation and properties
418(2)
Magnetic Archimedes Coriolis (MAC) waves
420(5)
Influence of density stratification and convective instability
420(4)
Influence of diffusion
424(1)
MAC waves in spherical geometry
425(6)
Quasi-geostrophic (QG) models of MAC waves
425(5)
MAC waves in full sphere geometry
430(1)
Limitations of linear models and towards nonlinear models
431(4)
Waves in experiments
435(2)
Waves in numerical dynamo simulations
437(1)
Concluding remarks on waves in geophysical and astrophysical systems
438(1)
Appendix A. Hide's β-plane model of MC Rossby waves
439(2)
Appendix B. Malkus' model of MC waves in a full sphere
441(4)
Appendix C. Busse and Soward's QG model of MAC waves
445(2)
References
447(4)
Dynamos of the ice giants
451
Sabine Stanley
Introduction
455
Proposed explanations
459
Insights from numerical dynamo models
460
Conclusions and future prospects
462
References
463