Atjaunināt sīkdatņu piekrišanu

Dyneins: The Biology of Dynein Motors 2nd edition [Hardback]

Edited by (Professor, Department of Molecular Biology and Biophysics Director, Electron Microscopy Facility, University of Connecticut Health Center)
  • Formāts: Hardback, 684 pages, height x width: 235x191 mm, weight: 1560 g
  • Izdošanas datums: 22-Nov-2017
  • Izdevniecība: Academic Press Inc
  • ISBN-10: 0128094710
  • ISBN-13: 9780128094716
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 131,38 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 684 pages, height x width: 235x191 mm, weight: 1560 g
  • Izdošanas datums: 22-Nov-2017
  • Izdevniecība: Academic Press Inc
  • ISBN-10: 0128094710
  • ISBN-13: 9780128094716
Citas grāmatas par šo tēmu:

Dyneins: The Biology of Dynein Motors, Second Edition, offers a broad view of dyneins from structure, composition and organization, to biology of dynein function in both cytoplasm and cilia. As the second book in a pair on this topic, these works provide an overview of dyneins, from structure and function, to dysfunction and disease. Since the first edition, enormous strides have been taken in understanding dynein structure, its organization in the axoneme, single molecule motor mechanics and the consequences of defects for human biology, disease and development. This second edition is extensively revised, with coverage expanded from 24 to 42 chapters.

Much of the expanded coverage occurs in Volume Two on dynein dysfunction and disease, such as the role of dynein and cancer, while Volume One covers the history and evolution of dyneins, dyneins in ciliary biology and cytoplasmic dynein biology.

  • Presents a broad-based, up-to date view of the biology of dynein motors
  • Discusses approaches from genetics, molecular biology, biochemistry and biophysics
  • Includes a companion website with movies of dynamic cell behavior
  • Covers the topic in comprehensive chapters written by world experts

Papildus informācija

Completely updated version, covering all aspects of dyneins: structure, biology, and the application of scientific research to treat human disease
Volume 1
List of Contributors
xix
Biography xxv
Preface xxvii
A Cautionary Note About Dynein Nomenclature xxxi
Part I History and Evolution
1 Discovery of dynein and its properties: a personal account
5(84)
Ian R. Gibbons
1.1 Introduction
5(4)
1.2 Research at Harvard
9(11)
1.3 Research at the University of Hawaii
20(42)
1.4 Semiretirement in Berkeley
62(14)
1.5 The pluses of working on a minus-end directed motor
76(13)
Acknowledgments
77(1)
References
77(12)
2 Origins of cytoplasmic dynein
89(12)
Richard B. Vallee
2.1 Early evidence for a potential cytoplasmic form of dynein
89(1)
2.2 Microtubule-associated proteins
90(5)
2.3 Cytoplasmic dynein as the retrograde transport factor
95(1)
2.4 Implications for axonemal dyneins
96(1)
2.5 Conclusions
97(4)
Acknowledgments
97(1)
References
97(4)
3 The evolutionary biology of dyneins
101(40)
Bill Wickstead
3.1 Introduction
101(10)
3.2 Dynein evolution in eukaryotes
111(10)
3.3 Evolution in the protoeukaryote
121(4)
3.4 The origins of dynein
125(6)
3.5 Summary
131(10)
References
132(9)
Part II Dyneins in Ciliary Biology
4 Cytoplasmic preassembly and trafficking of axonemal dyneins
141(22)
Paurav B. Desai
Anudariya B. Dean
David R. Mitchell
4.1 Introduction
141(4)
4.2 Cytoplasmic chaperones
145(6)
4.3 Late cytoplasmic assembly/maturation
151(1)
4.4 Transport of axonemal dyneins via intraflagellar transport
152(1)
4.5 Docking complex
153(2)
4.6 Conclusions
155(8)
References
155(8)
5 Composition and assembly of axonemal dyneins
163(40)
Stephen M. King
5.1 Introduction
163(1)
5.2 Classes of dynein components
164(2)
5.3 Monomeric inner dynein arms
166(1)
5.4 Dimeric inner dynein arm I1/f
166(6)
5.5 Outer dynein arms
172(3)
5.6 Interdynein linkers
175(1)
5.7 Properties and organization of axonemal dynein motor units
176(2)
5.8 Core WD-repeat intermediate chains associated with oligomeric motors
178(1)
5.9 Additional intermediate chains
179(1)
5.10 Core light chains associated with oligomeric motors
180(4)
5.11 Regulatory components
184(4)
5.12 Docking motors onto the axoneme
188(3)
5.13 Other dynein-associated components
191(1)
5.14 Conclusions
192(11)
Acknowledgments
192(1)
References
193(10)
6 Organization of dyneins in the axoneme
203(16)
Takashi Ishikawa
6.1 "9+2" structure
203(1)
6.2 Loci of axonemal dyneins
204(4)
6.3 Connection of dyneins and other components in cilia
208(1)
6.4 Conformational changes of single dynein molecules during the power stroke
209(1)
6.5 Behavior of dimeric dyneins
210(2)
6.6 How bending occurs?
212(1)
6.7 Asymmetric arrangement
213(1)
6.8 Future developments
214(5)
Supplementary data
214(1)
Acknowledgments
215(1)
References
215(4)
7 Genetic approaches to axonemal dynein function in Chlamydomonas and other organisms
219(32)
Toshiki Yogi
Ritsu Kamiya
7.1 Introduction
219(1)
7.2 Genetic studies of Chlamydomonas axonemal dyneins
220(7)
7.3 Genetic studies in various organisms
227(11)
7.4 Conclusion and perspective
238(13)
References
239(12)
8 Regulatory mechanics of outer-arm dynein motors
251(20)
Stephen M. King
8.1 Introduction
251(1)
8.2 Mechanosensory control
251(6)
8.3 Calcium control
257(2)
8.4 Thioredoxins and the effects of redox poise
259(2)
8.5 Phosphorylation and cyclic nucleotides
261(1)
8.6 Lis1-dependent alterations in mechanochemistry
262(2)
8.7 Interheavy chain interactions and effects of the intermediate chain/light chain complex
264(1)
8.8 Integrating outer arm regulatory mechanisms
264(7)
Acknowledgment
265(1)
References
265(6)
9 Control of axonemal inner dynein arms
271(28)
Juyeon Hwang
Emily L Hunter
Winfield S. Sale
Maureen Wirschell
9.1 Overview
271(3)
9.2 Organization and assembly of the inner dynein arms
274(6)
9.3 Functional role of II dynein and dynein c
280(1)
9.4 Regulation of 11 dynein
281(4)
9.5 New questions
285(14)
References
287(12)
10 Ciliary and flagellar motility and the nexin-dynein regulatory complex
299(38)
Mary E. Porter
10.1 Introduction
299(2)
10.2 The central pair, radial spokes, and dynein regulatory complex
301(3)
10.3 The dynein heavy chain suppressors
304(5)
10.4 The dynein regulatory complex and the inner dynein arms
309(3)
10.5 The dynein regulatory complex and nexin link
312(2)
10.6 Identification and localization of dynein regulatory complex subunits within the nexin link
314(6)
10.7 Identification of polypeptides that may interact with the nexin--dynein regulatory complex
320(1)
10.8 Function of the DRC--nexin link in motility and future directions
321(16)
Acknowledgments
324(1)
References
324(13)
11 Regulation of dynein-driven ciliary and flagellar movement
337(32)
Chikako Shingyoji
11.1 Introduction
337(3)
11.2 Basic features of the components of cilia and flagella
340(3)
11.3 Regulation of microtubule sliding in the axoneme
343(5)
11.4 Sliding microtubule theory and bend formation
348(3)
11.5 The mechanism of oscillation
351(11)
11.6 Outlook
362(7)
Acknowledgments
362(1)
References
362(7)
12 Dynein-mediated photobehavioral responses in Chlamydomonas
369(18)
Noriko Ueki
Ken-ichi Wakabayashi
12.1 Introduction: photobehavioral responses and the eyespot in Chlamydomonas
369(5)
12.2 Flagellar behavior during phototaxis
374(3)
12.3 Flagellar behavior during photoshock response
377(2)
12.4 Photokinesis
379(2)
12.5 Conclusion
381(6)
Acknowledgments
381(1)
References
381(6)
13 Dynein and intraflagellar transport
387(48)
George B. Witman
Yuqing Hou
13.1 Introduction
387(2)
13.2 Intraflagellar transport
389(2)
13.3 Discovery of the cytoplasmic dynein 2 heavy chain and early proposals for its function
391(1)
13.4 Identification of cytoplasmic dynein 2 as the retrograde intraflagellar transport motor
392(4)
13.5 Structure and subunit content of cytoplasmic dynein 2
396(16)
13.6 Variations on the theme: multiple dynein 2 HCs and a possible alternative dynein for retrograde IFT
412(1)
13.7 Biological functions of cytoplasmic dynein 2 and retrograde intraflagellar transport
413(8)
13.8 Cytoplasmic function of dynein 2
421(2)
13.9 Regulation of dynein 2 expression, localization, and function
423(1)
13.10 Conclusion
424(11)
Acknowledgments
424(1)
References
425(10)
Part III Cytoplasmic Dynein Biology
14 Cytoplasmic dynein function defined by subunit composition
435(16)
K. Kevin Pfister
14.1 Introduction
435(1)
14.2 Heavy chain (DYNC1H)
436(1)
14.3 Light-intermediate chain (DYNC1LI)
437(1)
14.4 Intermediate chain (DYNC1I)
438(2)
14.5 DYNLL (LC8 light chain)
440(1)
14.6 DYNLT (Tctex light chain)
441(1)
14.7 DYNLRB (roadblock light chain)
442(1)
14.8 Conclusion
443(8)
Acknowledgment
443(1)
References
443(8)
15 Regulation of cytoplasmic dynein motility
451(20)
Richard J. McKenney
15.1 Introduction
451(1)
15.2 Cytoplasmic dynein's allosteric regulatory systems
451(1)
15.3 Dynactin
452(1)
15.4 Dynein is autoinhibited
453(4)
15.5 Dynactin relieves dynein's autoinhibition and activates processive directional motility
457(2)
15.6 The role of the dynactin--microtubule interaction
459(2)
15.7 Cargo-mediated licensing of dynein motor activity
461(1)
15.8 Conclusion
462(9)
References
464(7)
16 Insights into cytoplasmic dynein function and regulation from fungal genetics
471(32)
Xin Xiang
16.1 Introduction
471(1)
16.2 Discoveries of dynein function in spindle orientation/nuclear migration
472(4)
16.3 Identification of dynein regulators using fungal genetics
476(2)
16.4 Dissecting the mechanism and function of the microtubule plus-end accumulation of cytoplasmic dynein
478(4)
16.5 Understanding the functions of various components of the dynein and dynactin complexes
482(3)
16.6 Identification of proteins required for dynein--cargo interaction
485(3)
16.7 Conclusions
488(15)
Acknowledgments
489(1)
References
489(14)
17 Role of dynactin in dynein-mediated motility
503(14)
Stephanie A. Ketcham
Trina A. Schroer
17.1 Dynactin: three structural domains with distinct functions
503(3)
17.2 Teasing out interactions among dynactins, microtubules, and dyneins
506(2)
17.3 Mechanism of dynein activation
508(2)
17.4 Dynactin pointed-end complex subunits govern dynein-cargo binding
510(7)
References
512(5)
18 Role of cytoplasmic dynein and dynactin in mitotic checkpoint silencing
517(18)
Cody W. Lewis
Gordon K. Chan
18.1 Kinetochore
517(1)
18.2 Kinetochore--microtubule attachment and error correction
518(1)
18.3 The mitotic checkpoint
519(1)
18.4 Mitotic checkpoint silencing
520(1)
18.5 Dynein/dynactin and Spindly
521(1)
18.6 Dynein/dynactin-mediated shedding of kinetochore mitotic checkpoint proteins
522(2)
18.7 Outstanding questions
524(11)
Acknowledgments
526(1)
References
526(9)
19 Cytoplasmic dynein during mitosis
535(22)
Edward H. Hinchcliffe
Kevin T. Vaughan
19.1 Introduction
535(1)
19.2 Model systems of mitotic dynein
536(2)
19.3 Dynein at the nuclear envelope
538(1)
19.4 Spindle pole dynein
538(3)
19.5 Cortical dynein
541(1)
19.6 Kinetochore dynein
542(5)
19.7 Phosphorylation
547(1)
19.8 Future questions
548(1)
19.9 Conclusions
548(9)
References
548(9)
20 Dynein and dynactin at microtubule plus ends
557(12)
Rupam Jha
Thomas Surrey
20.1 Introduction
557(1)
20.2 Growing microtubule plus end accumulation of dynein and dynactin
557(6)
20.3 Future perspectives
563(6)
Acknowledgments
564(1)
References
564(5)
21 Drosophila cytoplasmic dynein: mutations, tools, and developmental functions
569(60)
Amanda L. Neisch
Adam W. Avery
Min-Gang Li
Thomas S. Hays
21.1 Introduction
569(5)
21.2 Drosophila dynein genes and mutations
574(2)
21.3 Drosophila as a model system: tools and advantages
576(4)
21.4 Dynein function in gametogenesis
580(10)
21.5 Dynein function in embryogenesis
590(10)
21.6 Dynein function in neurons
600(10)
21.7 Conclusion
610(19)
Acknowledgments
611(1)
References
611(18)
Index 629
Stephen M. King is Professor of Molecular Biology and Biophysics at the University of Connecticut School of Medicine and is also director of the electron microscopy facility. He has studied the structure, function and regulation of dyneins for over 30 years using a broad array of methodologies including classical/molecular genetics, protein biochemistry, NMR structural biology and molecular modeling, combined with cell biological approaches, imaging and physiological measurements.