Atjaunināt sīkdatņu piekrišanu

E-grāmata: Dyneins: Dynein Mechanics, Dysfunction, and Disease

Edited by (Professor, Department of Molecular Biology and Biophysics Director, Electron Microscopy Facility, University of Connecticut Health Center)
  • Formāts: PDF+DRM
  • Izdošanas datums: 28-Nov-2017
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128097014
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 130,11 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 28-Nov-2017
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128097014
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Dyneins: Structure, Biology and Disease, Second Edition, offers a broad view of dyneins mechanics, dysfunction, and disease, providing an overview of dyneins from structure and function, to dysfunction and disease.

Since the first edition, enormous strides have been taken in understanding dynein structure, its organization in the axoneme, single molecule motor mechanics, and the consequences of defects for human biology, disease, and development.

To account for these enormous strides, the second edition is extensively revised. Additionally, the coverage has expanded from 24 to 42 chapters, and is now housed in two volumes. Much of the expanded coverage occurs in Volume 2 which focuses on dynein dysfunction and disease, such as the role of dynein and cancer.

Volume 1 covers the history and evolution of dyneins, dyneins in ciliary biology, and cytoplasmic dynein biology, while Volume 2 covers the structure and mechanics of dynein motors and dynein dysfunction and disease.

  • Presents a broad-based and up-to date view of dynein mechanics, dysfunction, and disease
  • Contains approaches from genetics, molecular biology, biochemistry, and biophysics discussed
  • Provides companion website with movies of dynamic cell behavior
  • Includes extensive chapters written by leading, global experts

Papildus informācija

With its related Volume, The Biology of Dynein Motors, this volume provides a definitive view of the largest of the three families of motor proteins
Volume 2
List of Contributors
xix
Biography xxv
Preface xxvii
A Cautionary Note About Dynein Nomenclature xxxi
Part I Structure and Mechanics of Dynein Motors
1 Electron microscopy of isolated dynein complexes and the power stroke mechanism
3(34)
Kazuhiro Oiwa
Hitoshi Sakakibara
Ken'ya Furuta
1.1 Introduction
3(3)
1.2 Historical background of dyneins
6(6)
1.3 Electron microscopic techniques used in recent dynein research
12(3)
1.4 Properties of dynein molecules revealed by advanced electron microscopic techniques
15(8)
1.5 Force generating mechanism of dynein
23(14)
References
30(7)
2 Mechanism and regulation of dynein motors
37(16)
Helgo Schmidt
Andrew P. Carter
2.1 Overall architecture of the dynein motor
37(1)
2.2 The mechanochemical cycle of the dynein motor
38(1)
2.3 Conformational changes in the AAA+ ring drive the mechanochemical cycle
39(2)
2.4 The remodeling of the linker during the mechanochemical cycle
41(1)
2.5 ATP hydrolysis primes the dynein motor for microtubule rebinding and the linker power stroke
42(1)
2.6 Variations of the dynein mechanochemical cycle
43(1)
2.7 How dynein motors walk along the microtubule
43(3)
2.8 Determinants of dynein directionality
46(1)
2.9 Dynein motor activation by cargo binding
47(1)
2.10 Conclusions
48(5)
References
49(4)
3 Structural analysis of dynein intermediate and light chains
53(36)
John C. Williams
Amanda E. Siglin
Christine M. Lightcap
Amrita Dawn
3.1 Introduction
53(4)
3.2 Abbreviated background of light chains
57(2)
3.3 Structure of the apo light chains
59(2)
3.4 Structure of liganded light chains
61(4)
3.5 LC8 and TcTex-1 promiscuity
65(2)
3.6 Light chain isoforms
67(2)
3.7 Mammalian dynein intermediate chains
69(2)
3.8 Molecular model of the light-intermediate chain structure
71(1)
3.9 Light chains and cargo
72(1)
3.10 Posttranslational modifications
73(1)
3.11 The role of LC8 and TcTex-1 on dynein
74(3)
3.12 Summary
77(12)
References
77(12)
4 Biochemical purification of axonemal and cytoplasmic dyneins
89(24)
Kazuo Inaba
4.1 Introduction
89(1)
4.2 Axonemal dyneins
90(9)
4.3 Cytoplasmic dynein
99(4)
4.4 Storage of dynein
103(1)
4.5 Conclusion and perspective
103(10)
Acknowledgments
104(1)
References
104(9)
5 Single-molecule dynein motor mechanics in vitro
113(24)
Ahmet Yildiz
5.1 Introduction
113(1)
5.2 The mechanochemical cycle of dynein
113(2)
5.3 Processivity of a dynein dimer
115(1)
5.4 Velocity of dynein motors
116(1)
5.5 The stepping mechanism
117(2)
5.6 Stepping pattern of the two motor domains
119(2)
5.7 The role of the AAA sites in dynein motility
121(2)
5.8 Force generation
123(2)
5.9 The mechanism of minus end directionality
125(1)
5.10 Mammalian dynein/dynactin complex
126(2)
5.11 Future directions
128(9)
Acknowledgments
129(1)
References
129(8)
6 Biophysical properties of dynein in vivo
137(16)
George T. Shubeita
Babu J.N. Reddy
Steven P. Gross
6.1 Motility and regulation of dynein in vitro
137(2)
6.2 Biophysical function of dynein in vivo
139(4)
6.3 Regulation of dynein motility in vivo
143(10)
References
147(6)
7 Mechanics of bidirectional cargo transport
153(20)
William O. Hancock
7.1 Introduction
153(1)
7.2 Experimental and computational work to date on bidirectional transport
154(1)
7.3 Models of bidirectional transport
155(3)
7.4 Kinesins involved in bidirectional transport
158(2)
7.5 Dynein properties relevant to bidirectional transport
160(1)
7.6 Roles of MAPs and tubulin PTMs in bidirectional transport
161(1)
7.7 Potential effects of membrane fluidity on bidirectional transport
162(2)
7.8 Concluding thoughts
164(9)
References
164(9)
8 Chemical probes for dynein
173(20)
Jonathan B. Steinman
Tarun M. Kapoor
8.1 General approach to inhibiting dynein
174(2)
8.2 Nucleotide-mimetic inhibitors of dynein
176(2)
8.3 Ciliobrevins: cell-permeable small molecule dynein inhibitors
178(5)
8.4 Other approaches that allow fast temporal control over dynein function
183(10)
Acknowledgments
187(1)
References
187(6)
9 Computational modeling of dynein activity and the generation of flagellar beating waveforms
193(22)
Veikko F. Geyer
Pablo Sartori
Frank Julicher
Jonathan Howard
9.1 Introduction
193(1)
9.2 Models for beat control in the flagellum
194(2)
9.3 Theory
196(11)
9.4 Discussion
207(3)
A.1 Coefficient equations for the boundary value problem
210(1)
A.2 Parameter normalizations
211(4)
References
211(4)
Part II Dynein Dysfunction and Disease
10 Impacts of virus-mediated manipulation of host Dynein
215(20)
Miroslav P. Milev
Xaojian Yao
Lionel Berthoux
Andrew J. Mouland
10.1 Dynein and viral replication
215(1)
10.2 Kinesins
216(1)
10.3 Innate immunity, the Rabs, Rab7-interacting lysosomal protein, and vesicular transport
217(4)
10.4 Dynein, viruses, and the innate immune response
221(1)
10.5 IFITM3 and VAP-A
222(2)
10.6 Dyneins and nuclear integration of viral DNA
224(1)
10.7 Posttranslationally modified microtubules and Dynein
225(1)
10.8 Emerging viruses and co-opting of Dynein
225(10)
Major outstanding questions
226(1)
Acknowledgments
226(1)
References
226(9)
11 The use of mouse models to probe cytoplasmic dynein function
235(28)
Marco Terenzio
Sandip Koley
Elizabeth M.C. Fisher
Mike Fainzilber
11.1 The rationale behind using a genetic approach to study the dynein complex
235(5)
11.2 Different approaches for mouse genetic studies
240(3)
11.3 An allelic series of mutations in the cytoplasmic dynein heavy chain gene, Dync1h1
243(6)
11.4 DYNC1H1 mutations in humans
249(2)
11.5 Dynein light chain and intermediate chain mutants
251(3)
11.6 Dynactin mutant mice
254(1)
11.7 Conclusions
255(8)
Acknowledgments
255(1)
References
256(7)
12 Cytoplasmic dynein and its regulators in neocortical development and disease
263(24)
David J. Doobin
Richard B. Vallee
12.1 Neocortical development
263(4)
12.2 The role of dynein in radial glia progenitors and interkinetic nuclear migration
267(2)
12.3 Roles for the dynein pathway in postmitotic neuronal precursors
269(2)
12.4 Overview of malformations of cortical development associated with dynein mutations
271(1)
12.5 Lissencephaly associated with LIS1 mutations
272(1)
12.6 Malformations of cortical development associated with DYNC1H1 mutations
273(2)
12.7 NDE1 mutations and the pathogenesis of severe microcephaly
275(3)
12.8 Summary
278(9)
Acknowledgments
278(1)
References
279(8)
13 Cytoplasmic dynein dysfunction and neurodegenerative disease
287(30)
Armen J. Moughamian
Erika L.F. Holzbaur
13.1 Introduction
287(1)
13.2 Cytoplasmic dynein function in neurons
288(6)
13.3 Dynein dysfunction in mice
294(3)
13.4 Mutations in dynein and in dynein effectors result in a spectrum of neurodevelopmental and neurodegenerative disease in humans
297(6)
13.5 Dynein dysfunction in the pathogenesis of neurodegenerative disease: ALS, HD, and PD
303(3)
13.6 Conclusions
306(11)
References
307(10)
14 Dynein dysfunction as a cause of primary ciliary dyskinesia and other ciliopathies
317(40)
Niki T. Loges
Heymut Omran
14.1 Introduction
317(1)
14.2 Ultrastructure of motile cilia
318(1)
14.3 Outer dynein arms
319(3)
14.4 Inner dynein arms
322(1)
14.5 Ciliopathies
323(2)
14.6 Nodal cilia
325(2)
14.7 Ependymal cilia and hydrocephalus
327(1)
14.8 Sperm flagella and male infertility
328(1)
14.9 Fallopian tubes and female infertility
328(1)
14.10 Primary cilia dyskinesia
328(1)
14.11 Molecular defects affecting outer dynein arm components and docking
329(5)
14.12 Molecular defects affecting cytoplasmic preassembly of dynein arms
334(1)
14.13 Preassembly defects of ODA complex type-2 and DNALI1-associated IDA complexes
334(2)
14.14 Preassembly defects of ODA type-1 and type-2 and DNALI1-associated IDA complexes
336(2)
14.15 Molecular defects affecting the 96-nm axonemal ruler
338(1)
14.16 Molecular defects affecting the nexin-dynein regulatory complex
339(2)
14.17 Molecular defects affecting ciliary beat regulation
341(16)
References
343(14)
15 Severe skeletal abnormalities caused by defects in retrograde intraflagellar transport dyneins
357(46)
Miriam Schmidts
Hannah M. Mitchison
15.1 Introduction
357(2)
15.2 Role of cilia in skeletal development
359(1)
15.3 Clinical features of skeletal ciliopathies
360(9)
15.4 Cell biological basis of skeletal ciliopathies due to IFT defects
369(2)
15.5 Genetic basis of dynein-based skeletal ciliopathies associated with IFT defects
371(3)
15.6 Human mutations in cytoplasmic IFT dynein-2 genes
374(12)
15.7 Future perspective on clinical spectrum, new clinical models, and therapy
386(17)
Acknowledgments
388(1)
References
388(15)
16 Ciliary dynein dysfunction caused by chronic alcohol exposure
403(16)
Michael Price
Fan Yang
Joseph H. Sisson
Maureen Wirschell
16.1 Overview
403(1)
16.2 Alcohol and mucociliary function
404(5)
16.3 Alcohol and Chlamydomonas flagella
409(3)
16.4 New questions and future directions
412(7)
References
413(6)
17 Dynein-based motility of pathogenic protozoa
419(18)
Simon Imhof
Kent L. Hill
17.1 Introduction: impact of flagellated protozoan parasites on human health and agriculture
419(2)
17.2 Biology and mechanism of flagellar motility in parasite infections
421(9)
17.3 Final remarks
430(7)
Supplementary data
431(1)
Acknowledgments
431(1)
References
431(6)
18 Dynein axonemal light chain 4: involvement in congenital mirror movement disorder
437(14)
John B. Vincent
18.1 Introduction
437(1)
18.2 Axonemal dynein components: biology and disease
437(8)
18.3 Conclusions
445(6)
References
446(5)
19 Does dynein influence the non-Mendelian inheritance of chromosome 17 homologues in male mice?
451(24)
Stephen H. Pilder
19.1 Prevailing models of the genetic and functional basis of phenotypes specific to male mice carrying t-haplotypes during the early years of the genomics era
451(6)
19.2 Properties of t-complex testis expressed-1
457(1)
19.3 Properties of t-complex testis expressed-2
458(2)
19.4 Properties of Dnahc8
460(4)
19.5 Chromosomal deletion analysis modifies Lyon's model
464(1)
19.6 Identification of t-complex distorters
465(2)
19.7 What about dyneins?
467(8)
References
470(5)
Index 475
Stephen M. King is Professor of Molecular Biology and Biophysics at the University of Connecticut School of Medicine and is also director of the electron microscopy facility. He has studied the structure, function and regulation of dyneins for over 30 years using a broad array of methodologies including classical/molecular genetics, protein biochemistry, NMR structural biology and molecular modeling, combined with cell biological approaches, imaging and physiological measurements.