Kriso.lv interneta veikals karantīnas laikā darbību nepārtrauc, pasūtījumi tiek pieņemti visu diennakti. Arī pasūtījumu piegāde notiek kā parasti – ar Omniva kurjerdienesta starpniecību.

Earth Materials: Components of a Diverse Planet [Mīkstie vāki]

(The University of Mississippi, Oxford, U.S.A.), (Department of Geology, University of North Dakota, USA), (Unversity of Michigan, Ann Arbor, U.S.A.), (University of Kentucky, Lexington, U.S.A.)
  • Formāts: Paperback / softback, 532 pages, height x width: 276x219 mm, weight: 1696 g
  • Izdošanas datums: 13-Aug-2019
  • Izdevniecība: CRC Press
  • ISBN-10: 0367185946
  • ISBN-13: 9780367185947
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 82,62 €
  • Pievienot vēlmju sarakstam
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Ielikt grozā
  • Daudzums:
  • Piegādes laiks - 4-6 nedēļas
  • Formāts: Paperback / softback, 532 pages, height x width: 276x219 mm, weight: 1696 g
  • Izdošanas datums: 13-Aug-2019
  • Izdevniecība: CRC Press
  • ISBN-10: 0367185946
  • ISBN-13: 9780367185947
Citas grāmatas par šo tēmu:

There is a large and growing need for a textbook that can form the basis for integrated classes that look at minerals, rocks, and other Earth materials. Despite the need, no high-quality book is available for such a course. Earth Materials is a wide-ranging undergraduate textbook that covers all the most important kinds of (inorganic) Earth materials. Besides traditional chapters on minerals and rocks, this book features chapters on sediments and stratigraphy, weathering and soils, water and the hydrosphere, and mineral and energy deposits. Introductions to soil mechanics and rock mechanics are also included.

This book steers away from the model of traditional encyclopedic science textbooks, but rather exposes students to the key and most exciting ideas and information, with an emphasis on thinking about Earth as a system. The book is written in such a manner as to support inquiry, discovery and other forms of active learning. All chapters start with a short topical story or vignette, and the plentiful photographs and other graphics are integrated completely with the text.

Earth Materials will be interesting and useful for a wide range of learners, including geoscience students, students taking mineralogy and petrology courses, engineers, and anyone interested in learning more about the Earth as a system.

Preface xix
About the Authors xxi
Acknowledgments xxiii
Part I Introduction to Earth 1(62)
1 The Origin of the Elements and Earth
3(18)
1.1 Orion
3(2)
1.2 The big picture
5(3)
1.3 The beginning
8(2)
1.3.1 The big bang
8(1)
1.3.2 Stellar evolution
9(1)
1.4 Origin of the solar system
10(5)
1.4.1 What makes up the solar system?
10(1)
1.4.2 Solar nebula hypothesis
11(1)
1.4.3 The planets
11(2)
1.4.4 Dwarf planets
13(1)
1.4.5 Asteroids and meteoroids
13(1)
1.4.6 Classification and origin of meteorites
14(1)
1.4.7 Comets
15(1)
1.5 Evolution of the solar system
15(3)
1.5.1 Planetesimals and formation of protoplanets
15(1)
1.5.2 Differentiation of the terrestrial planets and the moon
16(1)
1.5.3 Planetary atmospheres
17(1)
1.6 What is Earth made of today?
18(2)
Questions for thought-chapter 1
20(1)
2 Earth Systems and Cycles
21(42)
2.1 A Sand County Almanac
21(1)
2.2 The Earth system and my aquarium
22(1)
2.2.1 Earth from space
22(1)
2.2.2 A simpler system
23(1)
2.3 Systems and scientific investigations
23(7)
2.3.1 Classification of systems
24(1)
2.3.2 Earth's spheres
25(2)
2.3.3 Broader views
27(1)
2.3.4 System reservoirs and fluxes
27(1)
2.3.5 Cycles
28(2)
2.4 Rocks and the Rock Cycle
30(3)
2.4.1 At Earth's surface
31(1)
2.4.2 Lithification
32(1)
2.4.3 Soil
32(1)
2.4.4 Deeper in Earth
32(1)
2.5 From continental drift to plate tectonics
33(6)
2.5.1 Continental drift: A hypothesis that led to the theory of plate tectonics
33(1)
2.5.2 Development of the theory of plate tectonics
34(5)
2.5.2.1 Mapping the ocean floor
34(1)
2.5.2.2 Global seismicity
35(1)
2.5.2.3 Global volcanism
35(1)
2.5.2.4 Earth's magnetic field and paleomagnetism
35(3)
2.5.2.5 Confirming evidence
38(1)
2.5.2.6 Developing a theory
38(1)
2.6 The theory of plate tectonics
39(14)
2.6.1 Dynamic Earth
41(1)
2.6.2 Divergent plate boundaries: spreading zones
42(2)
2.6.2.1 Mid-ocean ridges
42(1)
2.6.2.2 Continental rifts
43(1)
2.6.3 Convergent boundaries (plate collisions)
44(2)
2.6.3.1 Subduction zones
44(1)
2.6.3.2 Ocean-ocean subduction
44(1)
2.6.3.3 Ocean-continent subduction
45(1)
2.6.3.4 Continent-continent collisions
45(1)
2.6.4 Transform plate boundaries
46(2)
2.6.5 Hot spots
48(1)
2.6.6 Orogenies
49(3)
2.6.7 Convection in the mantle
52(1)
2.7 The water cycle
53(1)
2.8 Carbon and the carbon cycle
54(7)
2.8.1 Isotopes of carbon
55(1)
2.8.1.1 Carbon-14
55(1)
2.8.1.2 Stable carbon isotopes
56(1)
2.8.2 Carbon in water
56(1)
2.8.3 Carbon in sediments, soils, and rocks
57(1)
2.8.4 Carbon in biological organisms
58(1)
2.8.5 Carbon in the atmosphere
59(14)
2.8.5.1 Carbon dioxide
59(1)
2.8.5.2 Methane
59(1)
2.8.5.3 Global climate change
59(2)
Questions for thought-chapter 2
61(2)
Part II Fundamental Earth Materials 63(268)
3 Minerals
65(38)
3.1 Zeolites
65(3)
3.2 Minerals defined
68(1)
3.3 Importance of minerals
68(2)
3.4 Studying minerals from the past to present
70(2)
3.5 Elements, minerals, and rocks
72(1)
3.6 Mineral formation
73(3)
3.6.1 Igneous minerals
73(1)
3.6.2 Aqueous minerals
74(1)
3.6.3 Metamorphic minerals
74(1)
3.6.4 Mineraloids
75(1)
3.6.5 Natural and synthetic minerals
75(1)
3.6.6 Biominerals
76(1)
3.7 Common elements and the most common minerals
76(3)
3.8 Mineral compositions
79(4)
3.8.1 Solid solutions and mineral series
79(1)
3.8.2 Limited solid solutions
80(2)
3.8.3 Mineral varieties
82(1)
3.8.4 Mineral groups
83(1)
3.9 Mineral stability
83(2)
3.10 Mineral classification
85(2)
3.11 Mineral properties and identification
87(13)
3.11.1 Crystal shape
88(1)
3.11.2 Mineral appearance
89(6)
3.11.2.1 Luster
89(1)
3.11.2.2 Diaphaneity
89(3)
3.11.2.3 Color
92(1)
3.11.2.4 Streak
93(1)
3.11.2.5 Luminescence
94(1)
3.11.2.6 Play of colors
94(1)
3.11.3 Strength and breaking of minerals
95(4)
3.11.3.1 Tenacity
95(1)
3.11.3.2 Fracture, cleavage, and parting
96(2)
3.11.3.3 Hardness
98(1)
3.11.4 Density and specific gravity
99(1)
3.11.5 Magnetism of minerals
99(1)
3.11.6 Electrical properties
100(1)
3.11.7 Reaction to dilute hydrochloric acid
100(1)
3.11.8 Other properties
100(1)
Questions for thought-chapter 3
100(3)
4 Mineral Crystals
103(34)
4.1 Cuevo de los Cristales
103(1)
4.2 Crystallography and crystal chemistry
104(1)
4.3 The process of crystallization
105(2)
4.4 Ionic crystals
107(8)
4.4.1 Ionic size
107(1)
4.4.2 Closest packing
107(2)
4.4.3 Exceptions to closest packing
109(1)
4.4.4 Coordination number
110(1)
4.4.5 Pauling's rules
111(7)
4.4.5.1 Rule 1: the radius ratio principle
111(2)
4.4.5.2 Rule 2: bond strength
113(1)
4.4.5.3 Rules 3 and 4: sharing of anions
114(1)
4.4.5.4 Rule 5: the principle of parsimony
114(1)
4.5 Silicate minerals
115(3)
4.6 Elemental substitutions in mineral crystals
118(2)
4.6.1 Simple substitutions and coupled substitutions
118(1)
4.6.2 Limited and complete solid solutions
119(1)
4.7 The arrangement of atoms in crystalline solids
120(14)
4.7.1 Unit cells, atoms, and symmetry in two dimensions
121(3)
4.7.1.1 Point symmetry
121(1)
4.7.1.2 Translational symmetry
122(2)
4.7.2 Unit cells and symmetry in three dimensions
124(15)
4.7.2.1 Unit cells
124(3)
4.7.2.2 Symmetry in three dimensions
127(1)
4.7.2.3 Symmetry of unit cells
128(1)
4.7.2.4 Symmetry of atomic arrangements and the symmetry of crystals
128(3)
4.7.2.5 Crystal shapes and symmetry
131(3)
Questions for thought-chapter 4
134(3)
5 Igneous Petrology and the Nature of Magmas
137(38)
5.1 Volcanism in Yellowstone National Park
137(2)
5.2 Igneous petrology
139(4)
5.2.1 Igneous processes
139(1)
5.2.2 Studying igneous rocks
140(1)
5.2.3 Geochemistry
141(2)
5.3 Magma compositions
143(3)
5.3.1 Similarities
143(1)
5.3.2 Differences
143(3)
5.4 Magma sources
146(5)
5.4.1 Where melting occurs
146(1)
5.4.2 The lithosphere and the asthenosphere
146(1)
5.4.3 Why melting occurs
147(2)
5.4.4 Decompression melting
149(1)
5.4.5 Flux melting
149(2)
5.5 Magma movement
151(2)
5.5.1 Buoyancy
151(1)
5.5.2 Magma chambers and cooling
152(1)
5.6 Different kinds of rocks
153(2)
5.7 Melting of minerals and rocks
155(4)
5.7.1 Congruent and incongruent melting
155(2)
5.7.2 Liquidus and solidus temperatures
157(1)
5.7.3 Bowen's reaction series
158(1)
5.8 The importance of partial melting and partial crystallization
159(6)
5.8.1 Incomplete melting
159(1)
5.8.2 Equilibrium or not?
160(1)
5.8.3 Fractional melting
160(1)
5.8.4 Fractional crystallization
161(2)
5.8.5 Other processes explaining variations in magma composition
163(1)
5.8.6 Parental magmas and differentiation
163(2)
5.9 The most common occurrences of melts of different compositions
165(2)
5.9.1 Ultramafic magmas
165(1)
5.9.2 Mafic magmas
166(1)
5.9.3 Intermediate magmas
166(1)
5.9.4 Felsic magmas
166(1)
5.10 A closer look at magma chemistry
167(5)
5.10.1 Major and minor elements
167(3)
5.10.2 Incompatible and compatible elements
170(1)
5.10.3 Rare earth elements
171(1)
Questions for thought-chapter 5
172(3)
6 Plutonic Rocks
175(26)
6.1 Yosemite Valley
175(2)
6.2 Plutons of different kinds
177(1)
6.3 Minerals in igneous rocks
178(4)
6.3.1 Primary minerals
178(2)
6.3.2 Secondary minerals
180(1)
6.3.3 Essential and accessory minerals
180(2)
6.4 Different kinds of plutonic rocks
182(5)
6.4.1 The IUGS system for naming plutonic rocks
182(3)
6.4.2 Aplite and pegmatite
185(2)
6.5 The southeast face of El Capitan
187(2)
6.6 The Sierra Nevada Batholith
189(1)
6.6.1 The Gold Rush
190(1)
6.7 The American Cordillera
190(1)
6.8 Mafic and ultramafic plutonic rocks
191(8)
6.8.1 Naming mafic and ultramafic rocks
191(2)
6.8.2 Occurrences of mafic plutonic rocks
193(1)
6.8.3 Occurrences of ultramafic plutonic rocks
194(1)
6.8.4 Oceanic crust, lithosphere, and ophiolites
194(2)
6.8.5 Layered mafic intrusions
196(1)
6.8.6 Mafic dikes and sills
197(1)
6.8.7 Mafic dike swarms
198(1)
Questions for thought-chapter 6
199(2)
7 Volcanoes and Their Products
201(30)
7.1 Tambora and Toba
201(2)
7.2 Volcanology
203(1)
7.3 Volcanic eruptions
204(10)
7.3.1 Effusive vs. explosive eruptions
204(3)
7.3.1.1 Effusive eruptions
204(2)
7.3.1.2 Explosive Eruptions
206(1)
7.3.2 A spectrum of volcanic eruptions
207(1)
7.3.3 Volcanic landforms
208(6)
7.3.3.1 Shield volcanoes
208(1)
7.3.3.2 Composite volcanoes
209(1)
7.3.3.3 Small features
210(1)
7.3.3.4 Caldera
210(2)
7.3.3.5 Eruption columns and their deposits
212(2)
7.4 Xenoliths and volatiles
214(3)
7.4.1 Xenoliths
214(1)
7.4.2 Volatiles
215(1)
7.4.3 Hydrovolcanic eruptions
216(1)
7.5 Classifying eruptions
217(5)
7.5.1 Hawaiian eruptions
219(1)
7.5.2 Strombolian eruptions
219(1)
7.5.3 Vulcanian eruptions
219(1)
7.5.4 Pelean eruptions
220(1)
7.5.5 Plinian eruptions
220(1)
7.5.6 Surtseyan eruptions
221(1)
7.6 From magma to rock
222(2)
7.7 Naming volcanic rocks
224(6)
7.7.1 Identifying rocks in the field
225(1)
7.7.2 IUGS classification
225(9)
7.7.2.1 IUGS system for naming feldspathic effusive rocks
225(1)
7.7.2.2 The TAS alternative
226(2)
7.7.2.3 IUGS system for naming pyroclastic rocks
228(2)
Questions for thought-chapter 7
230(1)
8 Sediments and Sedimentary Rocks
231(42)
8.1 Sedimentation during the formation of the Appalachian Mountains
231(2)
8.2 Sediment and sedimentary environments
233(1)
8.3 Products of weathering and erosion
234(6)
8.3.1 Different kinds of sediments
234(2)
8.3.2 Clastic sediments
236(4)
8.3.2.1 Mineralogical composition and grain size
237(1)
8.3.2.2 Clast shapes
238(1)
8.3.2.3 Sediment texture and maturity
239(1)
8.4 Transportation and deposition of clastic sediment
240(14)
8.4.1 Transportation by flowing water
240(2)
8.4.2 Deposition by flowing water
242(3)
8.4.2.1 Alluvium
242(1)
8.4.2.2 Features of river deposits
242(2)
8.4.2.3 Alluvial fans
244(1)
8.4.3 Transportation by wind
245(1)
8.4.4 Deposition by wind
245(2)
8.4.4.1 Sand Dunes
246(1)
8.4.4.2 Dust and loess
246(1)
8.4.5 Sediment transportation by glaciers and glacial sediments
247(4)
8.4.5.1 Continental ice sheets and alpine glaciers
247(2)
8.4.5.2 Glacial drift
249(1)
8.4.5.3 Till
249(1)
8.4.5.4 Stratified drift
250(1)
8.4.6 Mass movements by gravity
251(3)
8.5 Diagenesis and lithification
254(2)
8.6 Sedimentary layers and structures
256(5)
8.6.1 The nature of sediments
256(1)
8.6.2 Layering in sedimentary rocks
256(1)
8.6.3 Variable thickness of layering
257(1)
8.6.4 Crossbedding
257(2)
8.6.5 Graded bedding
259(1)
8.6.6 Bedforms
259(2)
8.6.6.1 Mudcracks
260(1)
8.6.6.2 Raindrop marks
260(1)
8.6.6.3 Flame structures
261(1)
8.7 Different kinds of sedimentary rocks
261(10)
8.7.1 Siliciclastic sedimentary rocks
261(4)
8.7.1.1 Mudrocks
261(1)
8.7.1.2 Sandstones
262(2)
8.7.1.3 Conglomerates
264(1)
8.7.1.4 Breccias
264(1)
8.7.2 Biochemical and related sedimentary rocks
265(1)
8.7.3 Chemical sediments and rocks
266(3)
8.7.3.1 Evaporite deposits
266(1)
8.7.3.2 Saline lake deposits
267(1)
8.7.3.3 Other chemical mineral deposits
268(1)
8.7.4 Carbonate rocks
269(8)
8.7.4.1 Allochemical carbonate rocks
270(1)
8.7.4.2 Orthochemical carbonate rocks
271(1)
Questions for thought-chapter 8
271(2)
9 Stratigraphy
273(32)
9.1 Rocks of the Grand Canyon
273(2)
9.2 Formations, groups, and members
275(2)
9.3 Stratigraphy
277(7)
9.3.1 Nicholas Steno's contributions
279(3)
9.3.1.1 The principle of original horizontality
280(1)
9.3.1.2 The law of superposition
280(1)
9.3.1.3 The principle of lateral continuity
280(1)
9.3.1.4 The Principle of Crosscutting Relationships
281(1)
9.3.1.5 The principle of inclusions
282(1)
9.3.2 William Smith's contributions
282(2)
9.4 Interpreting the environment of deposition
284(2)
9.5 Rock lithology
286(8)
9.5.1 Lithologic variation
286(1)
9.5.2 Different kinds of stratigraphy
286(1)
9.5.3 Lithostratigraphy
286(6)
9.5.3.1 Sedimentary facies
288(1)
9.5.3.2 Sea level change
288(2)
9.5.3.3 Stratigraphic columns
290(1)
9.5.3.4 Correlations
291(1)
9.5.4 Biostratigraphy
292(2)
9.5.4.1 Index fossils
294(1)
9.6 Geological time
294(5)
9.6.1 Chronostratigraphy
296(1)
9.6.2 Completeness of the stratigraphic record
296(3)
9.6.2.1 Unconformities
296(2)
9.6.2.2 Sequences
298(1)
9.7 Subsurface stratigraphy
299(4)
9.7.1 Samples from deep in Earth
300(1)
9.7.2 Geophysical logging
300(1)
9.7.3 Seismic reflection surveys
301(2)
Questions for thought-chapter 9
303(2)
10 Metamorphic Rocks
305(26)
10.1 Wollastonite in the Adirondack Mountains
305(1)
10.2 Metamorphic rocks
306(1)
10.3 Agents of metamorphism
307(2)
10.3.1 Heat and temperature
307(1)
10.3.2 Pressure and depth
308(1)
10.3.3 Directed stress
308(1)
10.3.4 Metamorphic fluids
309(1)
10.4 Metamorphic textures
309(6)
10.4.1 Grain size and porphyroblasts
309(1)
10.4.2 Foliated metamorphic rocks
310(3)
10.4.2.1 Slate
311(1)
10.4.2.2 Phyllite
311(1)
10.4.2.3 Schist
311(1)
10.4.2.4 Gneiss
312(1)
10.4.3 Nonfoliated metamorphic rocks
313(2)
10.4.3.1 Marbles
313(1)
10.4.3.2 Quartzite
314(1)
10.4.3.3 Other nonfoliated metamorphic rocks
314(1)
10.4.4 Lineations
315(1)
10.5 Metamorphic reactions
315(3)
10.5.1 Metamorphic phase diagrams
317(1)
10.6 Burial metamorphism
318(1)
10.7 Regional metamorphism
318(8)
10.7.1 The role of the protolith
320(1)
10.7.2 Metamorphic grade and pelitic rocks
320(2)
10.7.3 Mafic rocks and metamorphic facies
322(3)
10.7.3.1 Barrovian and Buchan facies series
323(1)
10.7.3.2 High-Temperature Facies Series
324(1)
10.7.3.3 High-Pressure Facies Series
324(1)
10.7.4 Mapping regional metamorphic terranes
325(1)
10.8 Contact metamorphism
326(2)
10.8.1 Skarns
326(2)
10.9 Other types of metamorphism
328(1)
10.9.1 Cataclastic metamorphism
328(1)
10.9.2 Shock metamorphism
328(1)
Questions for thought-chapter 10
328(3)
Part III Surficial Geology and Resources 331(138)
11 Weathering and Soils
333(32)
11.1 Mesopotamia
333(1)
11.2 Weathering
334(12)
11.2.1 Definition of weathering
334(3)
11.2.2 Physical weathering
337(4)
11.2.2.1 Ice and salt wedging
337(1)
11.2.2.2 Thermal expansion and contraction
338(1)
11.2.2.3 Unloading
339(1)
11.2.2.4 Abrasion by wind
339(1)
11.2.2.5 Abrasion at shorelines
340(1)
11.2.2.6 Abrasion by Ice
341(1)
11.2.3 Chemical weathering
341(3)
11.2.3.1 Spheroidal weathering
342(1)
11.2.3.2 Hydrolysis, oxidation, and hydration
342(1)
11.2.3.3 Dissolution
343(1)
11.2.4 Biological weathering
344(1)
11.2.5 Weathering products and rates
344(2)
11.2.5.1 Weathering rates of minerals
344(2)
11.2.5.2 Weathering rates of rocks
346(1)
11.3 Soil
346(18)
11.3.1 Earth's critical zone and soil
346(1)
11.3.2 The importance and nature of soil
347(1)
11.3.3 Soil profiles
348(1)
11.3.4 Soils and agriculture
349(2)
11.3.5 Pedogenesis (Soil formation)
351(5)
11.3.5.1 Parent material
352(1)
11.3.5.2 Climate
353(1)
11.3.5.3 Topography
354(1)
11.3.5.4 Organisms
355(1)
11.3.5.5 Time
355(1)
11.3.6 Characteristics of soils
356(4)
11.3.6.1 Color
357(1)
11.3.6.2 Temperature
357(1)
11.3.6.3 Texture
357(1)
11.3.6.4 Structure
358(1)
11.3.6.5 Consistency
359(1)
11.3.6.6 Water content and pore space
359(1)
11.3.7 Soil classification and naming
360(1)
11.3.8 Soil degradation
361(15)
11.3.8.1 Erosion
361(1)
11.3.8.2 Compaction
361(1)
11.3.8.3 Desertification
362(1)
11.3.8.4 Acidification
362(1)
11.3.8.5 Contamination
363(1)
11.3.8.6 Salination
363(1)
Questions for thought-chapter 11
364(1)
12 Water and the Hydrosphere
365(34)
12.1 The Salton Sea
365(2)
12.2 Water on Earth
367(4)
12.3 The water cycle
371(2)
12.4 The ocean systems
373(3)
12.5 Freshwater systems
376(12)
12.5.1 Rivers and streams
376(2)
12.5.2 Lakes
378(2)
12.5.3 Groundwater
380(4)
12.5.3.1 Aquifers
381(3)
12.5.4 The cryosphere
384(4)
12.5.4.1 Snow
385(1)
12.5.4.2 Glaciers
385(1)
12.5.4.3 Ice sheets and icebergs
386(1)
12.5.4.4 Sea ice
387(1)
12.5.4.5 Permafrost
388(1)
12.6 Water chemistry
388(4)
12.6.1 Ocean water
389(2)
12.6.2 Continental waters
391(1)
12.7 Freshwater quality
392(5)
12.7.1 Water and human health
393(1)
12.7.2 Ecosystem health
394(5)
12.7.2.1 Organic matter and eutrophication
395(1)
12.7.2.2 Thermal Pollution
396(1)
Questions for thought-chapter 12
397(2)
13 Mineral Deposits
399(30)
13.1 Bingham Canyon, Utah
399(2)
13.1.1 Why do we need Bingham Canyon?
400(1)
13.1.2 Bingham Canyon today
401(1)
13.2 Why dig such a big hole?
401(3)
13.2.1 Archaeological periods and mining
401(2)
13.2.2 Modern society and mining
403(1)
13.3 Mineral deposits and ore deposits
404(1)
13.4 The formation of ore deposits
404(1)
13.5 Placer deposits
405(3)
13.5.1 Placer gold
406(1)
13.5.2 Placer diamonds
407(1)
13.5.3 Placer tin
407(1)
13.6 Chemical ore deposits
408(6)
13.6.1 Laterite deposits
408(2)
13.6.2 Evaporite deposits
410(4)
13.6.2.1 Halite
411(1)
13.6.2.2 Sylvite
411(1)
13.6.2.3 Gypsum
412(1)
13.6.2.4 Continental evaporites
413(1)
13.6.2.5 Boron deposits
413(1)
13.6.2.6 Lithium deposits
414(1)
13.7 Sedimentary ore deposits
414(6)
13.7.1 Phosphorous deposits
415(1)
13.7.2 Banded iron formations
416(2)
13.7.3 Limestone
418(2)
13.7.3.1 Ancient roads
418(1)
13.7.3.2 Quarrying limestone
419(1)
13.7.3.3 Cement
419(1)
13.8 Igneous ore deposits
420(2)
13.8.1 Porphyry deposits
420(1)
13.8.2 Magmatic sulfide deposits and other cumulates
421(1)
13.9 Other kinds of ore deposits
422(2)
13.9.1 Volcanogenic massive sulfide deposits
422(1)
13.9.2 Mississippi valley type deposits
423(1)
13.10 Is mining necessary?
424(2)
13.10.1 Resources in the future
424(1)
13.10.2 Recycling of resources
425(1)
Questions for thought-chapter 13
426(3)
14 Energy Resources
429(40)
14.1 Star wars
429(1)
14.2 The energy that we use
430(2)
14.2.1 Sources of energy
431(1)
14.3 Fossil fuels
432(16)
14.3.1 Crude oil
432(2)
14.3.2 Origin of petroleum
434(2)
14.3.2.1 Source rocks and migration
435(1)
14.3.2.2 Petroleum reservoirs
435(1)
14.3.3 Petroleum exploration and production
436(4)
14.3.3.1 Drilling and recovery of oil and natural gas
437(1)
14.3.3.2 Primary oil recovery
438(1)
14.3.3.3 Secondary recovery
438(1)
14.3.3.4 Enhanced oil recovery
438(1)
14.3.3.5 Production from unconventional petroleum reservoirs
439(1)
14.3.4 Tar sands oil
440(1)
14.3.5 Coal
440(1)
14.3.6 Origin and properties of peat and coal
441(3)
14.3.6.1 Peat
441(2)
14.3.6.2 Different kinds of coal
443(1)
14.3.6.3 Low rank coal
443(1)
14.3.6.4 Higher rank coal
443(1)
14.3.7 Coal production
444(1)
14.3.8 Coal mining
445(2)
14.3.8.1 Hazards associated with coal mining
446(1)
14.3.8.2 Environmental problems associated with coal mining
446(1)
14.3.9 Coal bed methane
447(1)
14.4 Alternatives to fossil fuels
448(18)
14.4.1 Nuclear electrical generation
448(1)
14.4.2 Conventional nuclear power
449(5)
14.4.2.1 Breeder reactors and fuel reprocessing
450(1)
14.4.2.2 Uranium ore deposits
450(1)
14.4.2.3 In situ uranium mining
451(1)
14.4.2.4 What is the future for nuclear power?
452(2)
14.4.3 Geothermal energy
454(3)
14.4.3.1 Sources and uses of geothermal energy
454(1)
14.4.3.2 Geothermal electricity
454(1)
14.4.3.3 Geothermal heat pumps
455(2)
14.4.4 Renewable sources of energy
457(6)
14.4.4.1 Hydroelectric power
457(1)
14.4.4.2 Ocean Power: Catch the Wave!
458(1)
14.4.4.3 Wind energy
458(2)
14.4.4.4 Solar energy
460(3)
14.4.5 Waste-to-energy
463(1)
14.4.5.1 Incineration
463(1)
14.4.5.2 Gasification
463(1)
14.4.5.3 Pyrolysis
463(1)
14.4.5.4 Anaerobic digestion
464(1)
14.4.6 Energy from other kinds of biomass
464(1)
14.4.7 Energy from hydrogen gas
465(1)
14.5 Energy sources in the future
466(1)
Questions for thought-chapter 14
467(2)
Part IV Engineering Properties 469(46)
15 Soil Mechanics
471(22)
15.1 The Leaning Tower of Pisa
471(1)
15.2 Soil mechanics
472(1)
15.3 Sediments, soils, and rocks
472(1)
15.4 Consolidated and unconsolidated materials
473(1)
15.5 Soil composition and index properties
473(12)
15.5.1 Soil mineralogy
473(1)
15.5.2 Grain shape, roundness, and sphericity
474(1)
15.5.3 Grain size
475(1)
15.5.3.1 The Wentworth scale
475(1)
15.5.3.2 Krumbein phi scale
475(1)
15.5.4 Grain size distribution in sediments and soils
475(4)
15.5.4.1 Grain size analysis
475(2)
15.5.4.2 Grain size distribution
477(1)
15.5.4.3 Sorting and grading
477(1)
15.5.4.4 Representative grain sizes
478(1)
15.5.4.5 Hazen approximation
478(1)
15.5.4.6 Coefficient of uniformity and coefficient of curvature
479(1)
15.5.5 Soil phase relationships
479(2)
15.5.5.1 Void ratio and porosity
480(1)
15.5.5.2 Effective porosity
481(1)
15.5.5.3 Saturation and water content
481(1)
15.5.6 Atterberg limits
481(4)
15.5.6.1 Liquid limit
482(1)
15.5.6.2 Plastic limit
483(1)
15.5.6.3 Shrinkage limit
483(1)
15.5.6.4 Density
484(1)
15.6 Soil classification
485(1)
15.6.1 The USCS
485(1)
15.7 Soil strength
486(6)
15.7.1 Stress
486(2)
15.7.2 Pressure, stress, and depth
488(1)
15.7.3 Soil compaction and consolidation
488(1)
15.7.4 Shear strength
489(2)
15.7.5 Effect of water on strength
491(1)
Questions for thought-chapter 15
492(1)
16 Rock Mechanics
493(22)
16.1 Problems in Coeur d'Alene
493(1)
16.1.1 Rock bursts
493(1)
16.1.1.1 Strain bursts
494(1)
16.1.1.2 Pillar bursts
494(1)
16.1.1.3 Slip bursts
494(1)
16.1.1.4 Hazards and engineering
494(1)
16.2 Forces and stress
494(3)
16.2.1 The importance of stress
495(1)
16.2.2 Stress on rocks within Earth
496(1)
16.3 Strain-rock deformation in response to stress
497(8)
16.3.1 Different kinds of deformation
498(2)
16.3.2 What determines brittle or ductile behavior?
500(1)
16.3.3 Different kinds of rock failure
501(4)
16.3.3.1 Constructing a Mohr's circle diagram
502(1)
16.3.3.2 Interpreting a Mohr's circle diagram
503(1)
16.3.3.3 Failure criteria
503(1)
16.3.3.4 Effective stress
504(1)
16.4 On a larger scale
505(3)
16.4.1 Rock quality designation (RQD)
506(1)
16.4.2 The geological strength index (GSI)
507(1)
16.5 Determining values for rock strength
508(4)
16.5.1 Uniaxial compressive strength tests
508(2)
16.5.2 Point-load tests
510(1)
16.5.3 Uniaxial tension strength tests
510(1)
16.5.4 Brazilian test
510(1)
16.5.4.1 Shear strength testing
511(1)
16.5.5 The Schmidt hammer
511(1)
16.5.6 Triaxial rock testing
512(1)
16.5.7 Durability tests
512(1)
Questions for thought-chapter 16
512(3)
References 515(6)
Index 521
Dexter Perkins is a Professor at the University of North Dakota, USA. He was an undergraduate at the University of Rochester before moving to Ann Arbor to attend Law School at the University of Michigan, USA. He subsequently transferred to Michigan's Department of Geology and received a masters and a PhD degree. He is presently (in 2019) in his 38th year at UND. Kevin R. Henke is retired from the Center for Applied Energy Research (CAER) at the University of Kentucky, USA. He obtained his M.S. in Geology at the University of North Dakota in 1984, and his Ph.D. at the same university in 1997. His interests range from topics such as metamorphic petrology, mineralogy and geochemistry. Adam Simon is Professor of Earth and Environmental Sciences at the University of Michigan, USA. He obtained his Ph.D at the University of Maryland in 2003. His fields of study are economic geology, igneous petrology and geochemistry. Lance D. Yarbrough is Assistant Professor of Geology and Geological Engineering at the University of Mississippi, USA, where he obtained his Ph.D. in 2006. His areas of expertise include engineering geology, remote sensing, and geotechnical engineering.