Atjaunināt sīkdatņu piekrišanu

ECML PKDD 2018 Workshops: MIDAS 2018 and PAP 2018, Dublin, Ireland, September 10-14, 2018, Proceedings 2019 ed. [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 173 pages, height x width: 235x155 mm, weight: 454 g, 50 Illustrations, color; 20 Illustrations, black and white; X, 173 p. 70 illus., 50 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Artificial Intelligence 11054
  • Izdošanas datums: 07-Feb-2019
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030134628
  • ISBN-13: 9783030134624
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 173 pages, height x width: 235x155 mm, weight: 454 g, 50 Illustrations, color; 20 Illustrations, black and white; X, 173 p. 70 illus., 50 illus. in color., 1 Paperback / softback
  • Sērija : Lecture Notes in Artificial Intelligence 11054
  • Izdošanas datums: 07-Feb-2019
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030134628
  • ISBN-13: 9783030134624
This book constitutes revised selected papers from two workshops held at the 18th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, in Dublin, Ireland, in September 2018, namely:





MIDAS 2018 Third Workshop on Mining Data for Financial Applications and PAP 2018 Second International Workshop on Personal Analytics and Privacy.





The 12 papers presented in this volume were carefully reviewed and selected from a total of 17 submissions.







 
A Multivariate and Multi-step ahead Machine Learning Approach to
Traditional and Cryptocurrencies Volatility Forecasting.- Calibrating the
Mean-reversion Parameter in the Hull-White Model Using NeuralNetworks.- Deep
Factor ModelExplaining Deep Learning Decisions for Forecasting Stock Returns
with Layer-wise Relevance Propagation.- A Comparison of Neural Network
Methods for Accurate Sentiment Analysis of Stock Market Tweets.- A
Progressive Resampling Algorithm for Finding Very Sparse Investment
Portfolios.- ICIE 1.0: A Novel Tool for Interactive Contextual Interaction
Explanations.- Testing for Self-excitation in Financial Events: A Bayesian
Approach.-  A Web Crawling Environment to Support Financial Strategies and
Trend Correlation.- A differential privacy workflow for inference of
parameters in the Rasch model.- Privacy Preserving Client/Vertical-Servers
Classification.- Privacy Risk for Individual Basket Patterns.- Exploring
Students Eating Habits through Individual Profiling and Clustering Analysis.