Atjaunināt sīkdatņu piekrišanu

E-grāmata: Ecological Sustainability: Understanding Complex Issues

, (University of Connecticut, Storrs, USA)
  • Formāts: 548 pages
  • Izdošanas datums: 19-Apr-2016
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781466565135
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 90,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 548 pages
  • Izdošanas datums: 19-Apr-2016
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781466565135
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Complex Systems is a new field of science studying how parts of a system give rise to the collective behaviors of the system, and how the system interacts with its environment. This book examines the complex systems involved in environmental sustainability, and examines the technologies involved to help mitigate human impacts, such as renewable energy, desalination, carbon capture, recycling, etc. It considers the relationships and balance between environmental engineering and science, economics, and human activity, with regard to sustainability.

Recenzijas

"In this time of narrow specialization, the authors have provided a remarkably broad synthesis of the biophysical factors that support human sustainability." Joseph A. Tainter, Department of Environment and Society, Utah State University

Preface xiii
Authors xvii
1 Human Ecological Sustainability
1(16)
1.1 Introduction
1(6)
1.2 Is It Possible to Model Human Ecological Sustainability?
7(7)
1.3 Why Human Sustainability Is a Complex Issue
14(1)
1.4
Chapter Summary
15(2)
2 Review of Complexity and Complex Systems
17(40)
2.1 Introduction to Complexity
17(12)
2.1.1 When Is a System Complex?
18(1)
2.1.2 Examples
19(2)
2.1.3 Properties of CSs; Chaos and Tipping Points
21(2)
2.1.4 The Law of Unintended Consequences
23(5)
2.1.5 Complex Adaptive Systems
28(1)
2.2 Human Responses to Complexity
29(6)
2.2.1 Introduction
29(1)
2.2.2 The Social Action Rate Sensitivity Law
30(1)
2.2.3 Single-Cause Mentality
31(2)
2.2.4 The "Not in My Box" Mentality
33(1)
2.2.5 Complexity and Human Thinking
34(1)
2.3 Signal Flow Graphs and Mason's Rule
35(11)
2.3.1 Introduction
35(2)
2.3.2 Signal Flow Graphs
37(1)
2.3.3 Examples of Linear SFG Reduction
38(7)
2.3.4 Measures of SFG Complexity
45(1)
2.4 Modularity
46(10)
2.4.1 Introduction
46(1)
2.4.2 Measures of Modularity
47(1)
2.4.3 Examples of Modules in Sustainability Models
48(1)
2.4.3.1 Introduction
48(1)
2.4.3.2 Cod Fishery
48(5)
2.4.3.3 Aquifer
53(1)
2.4.3.4 Epidemic
54(2)
2.5
Chapter Summary
56(1)
3 Multidimensional Challenges to Human Sustainability
57(60)
3.1 Introduction
57(1)
3.2 The Challenge of Population Growth
58(12)
3.2.1 Introduction
58(5)
3.2.2 Effects of Overpopulation
63(3)
3.2.3 Mitigation Measures for Human Overpopulation
66(2)
3.2.4 Population Growth in Ecosystems
68(2)
3.3 Global Warming
70(7)
3.4 Water and Sustainability
77(7)
3.4.1 Introduction
77(2)
3.4.2 Drought and GW
79(5)
3.5 Bees, Pollination, and Food Crops
84(6)
3.5.1 Introduction
84(2)
3.5.2 CCD and Its Possible Causes
86(2)
3.5.3 The Impact of CCD on Our Food Supply
88(2)
3.6 Species Size Reduction Due to Habitat Warming: Another Challenge to Our Food Supply
90(1)
3.7 FF Energy and Sustainability
91(24)
3.7.1 Introduction
91(1)
3.7.2 Natural Gas
92(3)
3.7.2.1 Fracking
95(3)
3.7.3 Coal
98(1)
3.7.4 Oil
99(5)
3.7.5 Oil Shale
104(3)
3.7.6 Tar Sands
107(2)
3.7.7 Methane Hydrate
109(3)
3.7.8 US Oil Addiction
112(2)
3.7.9 Emissions
114(1)
3.8
Chapter Summary
115(2)
4 Mitigations of Human Impacts through Technology
117(156)
4.1 Introduction
117(1)
4.2 Biofuels
118(22)
4.2.1 Introduction
118(1)
4.2.2 Energy Densities of Fuels and Batteries
119(1)
4.2.3 Ethanol Fuel from Plant Starches
119(4)
4.2.4 Cellulosic Ethanol
123(5)
4.2.5 Methanol as Energy Source
128(4)
4.2.6 Biodiesel from Plant Oils
132(4)
4.2.7 Biofuel from Microalgae
136(2)
4.2.8 Hydrothermal Carbonization
138(1)
4.2.9 Solar Thermochemical Reactors
139(1)
4.3 Desalination
140(3)
4.3.1 Introduction
140(1)
4.3.2 Distillation
141(1)
4.3.3 Reverse Osmosis
142(1)
4.3.4 Humidification/Dehumidification
142(1)
4.3.5 Diffusion-Driven Desalination
142(1)
4.4 Carbon-Free Energy Sources
143(47)
4.4.1 Introduction to Wind Energy
143(1)
4.4.2 Energy in Wind
143(1)
4.4.3 Physics of WTs as Energy Sources
144(1)
4.4.4 Types of WTs
145(6)
4.4.5 Solar Energy
151(1)
4.4.5.1 Sun Flux on Earth
151(3)
4.4.5.2 Solar Thermal Electric Power Generation
154(4)
4.4.5.3 Solar PV Electric Power Generation
158(4)
4.4.5.4 Solar Thermoelectric Power Generation
162(3)
4.4.5.5 Thermophotovoltaic Power Systems
165(1)
4.4.5.6 Solar Energy Storage
166(1)
4.4.5.7 Solar Energy and Sustainability
167(2)
4.4.6 Hydropower, Including Tides and Waves
169(1)
4.4.6.1 Introduction
169(1)
4.4.6.2 Ocean Wave Energy
170(7)
4.4.6.3 Tidal Energy
177(2)
4.4.6.4 Hydroelectric Power
179(1)
4.4.7 GT Energy and Heat Pumps
180(3)
4.4.8 Hydrogen Economy
183(1)
4.4.8.1 Sources of H2
183(1)
4.4.8.2 Storing Hydrogen
184(1)
4.4.8.3 Distribution of H2
185(1)
4.4.8.4 H2 Uses
185(2)
4.4.8.5 Cost of Hydrogen
187(1)
4.4.8.6 Competition
188(1)
4.4.9 Interfacing Intermittent Renewable Sources to the Grid
188(2)
4.5 Carbon-Neutral Energy Sources
190(15)
4.5.1 Wood and Biomass
190(4)
4.5.2 Fuel Cells
194(7)
4.5.3 Biogenic Methane
201(4)
4.6 Energy Storage Means
205(18)
4.6.1 Introduction
205(1)
4.6.2 Pumped Hydro Storage
205(1)
4.6.3 Batteries
206(4)
4.6.4 Flow Batteries
210(4)
4.6.5 Compressed Air Energy Storage
214(3)
4.6.6 Electric Double-Layer Capacitors
217(2)
4.6.7 Flywheels
219(4)
4.6.8 Energy Storage by Mass PE
223(1)
4.7 Fusion Power
223(8)
4.7.1 Introduction
223(4)
4.7.2 "Hot" Fusion
227(2)
4.7.3 FRs and Sustainability
229(1)
4.7.4 Cold Fusion
229(2)
4.8 Nuclear Energy
231(14)
4.8.1 Nuclear Reactors
231(2)
4.8.1.1 Pebble-Bed Reactors
233(3)
4.8.1.2 Importance of Helium, a Nonrenewable Resource
236(2)
4.8.1.3 Hazards of PBRs
238(1)
4.8.2 Hazards of Nuclear Power Generation
238(1)
4.8.2.1 Radioactivity and Ionizing Radiation
238(1)
4.8.2.2 Radioactivity Measurement
239(3)
4.8.2.3 Sustainability and Nuclear Power
242(3)
4.9 Carbon Capture and Storage
245(17)
4.9.1 Introduction
245(8)
4.9.2 Carbon Dioxide Capture from Point Sources
253(4)
4.9.3 CO2 Storage and Recycling
257(2)
4.9.4 Cost of CCS
259(2)
4.9.5 CO2 Capture from the Atmosphere
261(1)
4.10 Water Vapor
262(6)
4.10.1 Introduction
262(3)
4.10.2 WV as GHG
265(3)
4.11 Engineering Energy Efficiency
268(2)
4.12
Chapter Summary
270(3)
5 Sustainable Agriculture
273(30)
5.1 Introduction
273(1)
5.2 Animal Husbandry: Concentrated Animal Feeding Operations
273(11)
5.2.1 Bacteria from CAFOs
274(1)
5.2.2 Antibiotic Resistance in Factory-Farmed Meat
274(3)
5.2.3 Anthelmintic Resistance in Farm Animal Parasites
277(1)
5.2.4 Hormone Use in CAFOs and Endocrine Disruption
277(1)
5.2.4.1 Types of Hormones Used
278(1)
5.2.4.2 Transmission of Endocrine Disruptors from CAFOs to Humans
279(2)
5.2.4.3 Actions of Endocrine Disruptors
281(3)
5.3 Industrial Agriculture
284(6)
5.3.1 Pesticides and Human Health
284(1)
5.3.1.1 Pesticides as Carcinogens
285(1)
5.3.1.2 Pesticides as Immune Suppressors
285(1)
5.3.1.3 Pesticides as Endocrine Disruptors
285(1)
5.3.2 Nitrate Pollution
286(1)
5.3.2.1 Nitrates and Dead Zones
286(2)
5.3.2.2 Nitrates and Human Health
288(1)
5.3.3 Topsoil Loss and Declining Crop Yields
288(2)
5.4 Loss of Genetic Diversity
290(1)
5.4.1 Responses to Loss of Genetic Diversity
291(1)
5.5 Genetically Modified Organisms
291(3)
5.6 Sustainable Agriculture
294(1)
5.7 Can Sustainable Agriculture Feed the World?
295(3)
5.8 Competition for Cropland
298(2)
5.8.1 Biofuels and Food Prices
298(1)
5.8.2 Land Grabs and Food Availability
299(1)
5.9
Chapter Summary
300(3)
6 Unconventional Foods: Insects, Plankton, Fungi, and In Vitro Meat
303(28)
6.1 Introduction
303(1)
6.2 Nutritional Value of Insects
304(2)
6.3 Can Insects Be Farmed?
306(2)
6.4 Plankton as a Source of Human Food
308(4)
6.5 Fungi: Food and More
312(13)
6.5.1 Introduction
312(1)
6.5.2 Edible Fungi
313(1)
6.5.2.1 Introduction
313(1)
6.5.2.2 Quorn
314(1)
6.5.2.3 Edible Mushrooms
315(2)
6.5.2.4 Mushroom Growth Media
317(1)
6.5.2.5 Poisonous Fungi
318(3)
6.5.2.6 Harmful Fungi
321(1)
6.5.3 Antibiotic Fungi
322(2)
6.5.4 Fuel Synthesis by Fungi
324(1)
6.5.5 Mushroom Farms
325(1)
6.6 Food from Tissue Culture Using Animal Stem Cells
325(3)
6.7
Chapter Summary
328(3)
7 Complex Economic Systems and Sustainability
331(30)
7.1 Introduction to Economic Systems
331(5)
7.2 Basic Economics; Steady-State S&D
336(16)
7.2.1 Forrester's Views
341(2)
7.2.2 Dynamic Models of ESs
343(3)
7.2.3 What We Should Know about Economic Complexity
346(3)
7.2.4 Tipping Points in ESs; Recession, Inflation, and Stagflation
349(3)
7.3 Introduction to ABMs and Simulations of Economic and Other Complex Systems
352(2)
7.4 Economic Challenges to Human Sustainability
354(4)
7.5
Chapter Summary
358(3)
8 Application of Complex Systems Thinking to Solve Ecological Sustainability Problems
361(12)
8.1 Introduction
361(1)
8.2 Dorner's Approaches to Tackling Complex Problems
362(2)
8.3 Frederic Vester's "Paper Computer"
364(3)
8.4 Sensitivity Model of Vester
367(2)
8.5 Can We Learn From Our Mistakes?
369(1)
8.6
Chapter Summary
370(3)
9 What Will Happen to Us? FAQs on Sustainability
373(16)
9.1 Introduction
373(1)
9.2 Will Technology Sustain Us?
374(8)
9.2.1 Food
374(3)
9.2.2 Water
377(1)
9.2.3 Energy
378(2)
9.2.4 Electric Vehicles
380(1)
9.2.5 Anthropogenic GHGs
381(1)
9.3 FAQs Concerning Sustainability
382(5)
9.4
Chapter Summary
387(2)
Glossary 389(68)
Bibliography and Recommended Reading 457(58)
Index 515
Robert B. Northrop, majored in electrical engineering (EE) at the Massachusetts Institute of Technology (MIT), graduating with a bachelors degree. At the University of Connecticut (UCONN), he received a masters degree in systems engineering. He entered a PhD program at UCONN in physiology, and received his PhD in 1964. Dr. Northrops research interests have been broad, interdisciplinary, and centered on biomedical engineering and physiology. His current interest lies in complex systems. Dr. Northrop was on the electrical and computer engineering faculty at UCONN until his retirement in June 1997. As emeritus professor, he still teaches graduate courses in biomedical engineering.







Anne N. Connor

, MA, is currently working as the director of community grants for Methodist Healthcare Ministries, a medical nonprofit organization in San Antonio, TX. Her educational background includes a bachelors degree from Dartmouth College, where she received honor citations in chemistry and sociology. Her masters degree in communications is from the University of New Mexico at Albuquerque. She is the coauthor of Introduction to Molecular Biology, Genomics and Proteomics for Biomedical Engineers (Taylor & Francis/CRC Press, ISBN # 1420061194). She has received numerous awards for her work, most recently a humanitarian award from the San Antonio health care community.