Atjaunināt sīkdatņu piekrišanu

Electric and Hybrid Vehicles: Design Fundamentals 3rd edition [Hardback]

(North Carolina State University, Raleigh, North Carolina, USA)
  • Formāts: Hardback, 498 pages, height x width: 254x178 mm, weight: 1229 g, 36 Tables, black and white; 343 Illustrations, black and white
  • Izdošanas datums: 22-Feb-2021
  • Izdevniecība: CRC Press
  • ISBN-10: 1138590584
  • ISBN-13: 9781138590588
  • Hardback
  • Cena: 171,76 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 498 pages, height x width: 254x178 mm, weight: 1229 g, 36 Tables, black and white; 343 Illustrations, black and white
  • Izdošanas datums: 22-Feb-2021
  • Izdevniecība: CRC Press
  • ISBN-10: 1138590584
  • ISBN-13: 9781138590588

A thoroughly revised third edition of this widely praised, bestselling textbook presents a comprehensive systems-level perspective of electric and hybrid vehicles with emphasis on technical aspects, mathematical relationships and basic design guidelines. The emerging technologies of electric vehicles require the dedication of current and future engineers, so the target audience for the book is the young professionals and students in engineering eager to learn about the area. The book is concise and clear, its mathematics are kept to a necessary minimum and it contains a well-balanced set of contents of the complex technology. Engineers of multiple disciplines can either get a broader overview or explore in depth a particular aspect of electric or hybrid vehicles.

Additions in the third edition include simulation-based design analysis of electric and hybrid vehicles and their powertrain components, particularly that of traction inverters, electric machines and motor drives. The technology trends to incorporate wide bandgap power electronics and reduced rare-earth permanent magnet electric machines in the powertrain components have been highlighted. Charging stations are a critical component for the electric vehicle infrastructure, and hence, a chapter on vehicle interactions with the power grid has been added. Autonomous driving is another emerging technology, and a chapter is included describing the autonomous driving system architecture and the hardware and software needs for such systems. The platform has been set in this book for system-level simulations to develop models using various softwares used in academia and industry, such as MATLAB®/Simulink, PLECS, PSIM, Motor-CAD and Altair Flux. Examples and simulation results are provided in this edition using these software tools.

The third edition is a timely revision and contribution to the field of electric vehicles that has reached recently notable markets in a more and more environmentally sensitive world.

Preface to the Third Edition xv
Acknowledgments xvii
Author xix
Chapter 1 Introduction to Electric and Hybrid Vehicles
1(22)
1.1 Electric Vehicles
3(1)
1.2 Hybrid Electric Vehicles
3(1)
1.3 Electric and Hybrid Vehicle Components
4(3)
1.4 Vehicle Mass and Performance
7(1)
1.5 Electric Motor and Engine Ratings
8(1)
1.6 Electric and Hybrid Vehicle History
9(7)
1.6.1 The Early Years
10(1)
1.6.2 1960s
10(1)
1.6.3 1970s
11(1)
1.6.4 1980s and 1990s
12(1)
1.6.4.1 GM Impact 3 (1993 Completed)
12(1)
1.6.4.2 Saturn EV1
13(1)
1.6.5 Recent EVs and HEVs
13(3)
1.7 Well-to-Wheel Analysis
16(1)
1.8 EV/ICEV Comparison
17(4)
1.8.1 Efficiency Comparison
18(2)
1.8.2 Pollution Comparison
20(1)
1.8.3 Capital and Operating Cost Comparison
20(1)
1.8.4 US Dependence on Foreign Oil
20(1)
1.9 Electric Vehicle Market
21(2)
Problems
22(1)
References
22(1)
Chapter 2 Vehicle Mechanics
23(28)
2.1 Roadway Fundamentals
23(2)
2.2 Laws of Motion
25(2)
2.3 Vehicle Kinetics
27(2)
2.4 Dynamics of Vehicle Motion
29(1)
2.5 Propulsion Power
30(2)
2.5.1 Force-Velocity Characteristics
30(2)
2.5.2 Maximum Gradability
32(1)
2.6 Velocity and Acceleration
32(7)
2.6.1 Constant FTR, Level Road
33(1)
2.6.1.1 Velocity Profile
34(1)
2.6.1.2 Distance Traversed
34(1)
2.6.1.3 Tractive Power
35(1)
2.6.1.4 Energy Required
36(1)
2.6.2 Non-constant FTR, General Acceleration
37(2)
2.7 Tire-Road Force Mechanics
39(7)
2.7.1 Slip
40(1)
2.7.2 Traction Force at Tire-Road Interface
41(1)
2.7.3 Force Transmission at Tire-Road Interface
42(1)
2.7.4 Quarter Car Model
43(1)
2.7.5 Traction Limit and Control
44(2)
2.8 Propulsion System Design
46(5)
Problems
46(3)
References
49(2)
Chapter 3 Vehicle Architectures and Design
51(36)
3.1 Electric Vehicles
51(1)
3.2 Hybrid Electric Vehicles
52(8)
3.2.1 Hybrids Based on Architecture
53(1)
3.2.1.1 Series and Parallel Hybrids
53(2)
3.2.1.2 Series--Parallel Hybrid
55(1)
3.2.1.3 Series--Parallel 2 × 2 Hybrid
56(1)
3.2.2 Hybrids Based on Transmission Assembly
57(1)
3.2.2.1 Pre- and Post-transmission Hybrids
57(1)
3.2.2.2 P0--P4 Hybrid Architectures
58(1)
3.2.2.3 48 V Hybrid Architectures
59(1)
3.2.3 Hybrids Based on Degree of Hybridization
60(1)
3.3 Plug-in Hybrid Electric Vehicle
60(1)
3.4 Electric Vehicles: Skateboard Chassis
61(1)
3.5 Powertrain Component Sizing
62(11)
3.5.1 EV Powertrain Sizing
63(1)
3.5.1.1 Initial Acceleration
64(1)
3.5.1.2 Rated Vehicle Velocity
65(1)
3.5.1.3 Maximum Velocity
65(1)
3.5.1.4 Maximum Gradability
66(1)
3.5.2 HEV Powertrain Sizing
66(1)
3.5.2.1 Rated Vehicle Velocity
67(1)
3.5.2.2 Initial Acceleration
68(1)
3.5.2.3 Maximum Velocity
68(1)
3.5.2.4 Maximum Gradability
69(1)
3.5.3 HEV Powertrain Sizing Example
69(1)
3.5.3.1 Total Power Required: Initial Acceleration
70(1)
3.5.3.2 IC Engine Power: Cruising Speed
71(1)
3.5.3.3 Maximum Velocity
72(1)
3.5.3.4 Generator Sizing
73(1)
3.5.3.5 Battery Sizing
73(1)
3.6 Mass Analysis and Packaging
73(2)
3.7 Mission-Based Design with Vehicle Simulation
75(12)
3.7.1 Vehicle Simulation Model
75(2)
3.7.2 Standard Drive Cycles
77(6)
Problems
83(1)
References
84(3)
Chapter 4 Autonomous Vehicles
87(18)
4.1 Five Levels of Autonomous Driving
88(1)
4.2 Autonomous Vehicle Functional Architecture
89(3)
4.2.1 Sensors
90(1)
4.2.2 External Communications
91(1)
4.3 Software Stack: Perception, Localization, Path Planning and Control
92(7)
4.3.1 Perception
92(2)
4.3.2 Localization
94(1)
4.3.3 Path Planning
95(1)
4.3.3.1 Mission Planning
95(1)
4.3.3.2 Behavioral Planning
95(1)
4.3.3.3 Local Planning
96(2)
4.3.4 Motion Controls
98(1)
4.4 Autopilot and Actuators
99(2)
4.4.1 Throttle-by-Wire
99(1)
4.4.2 Steer-by-Wire
99(1)
4.4.3 Brake-by-Wire
100(1)
4.5 Safety Enhancements with Level 1 Autonomous Driving
101(4)
4.5.1 Cruise Control
101(1)
4.5.2 Lane Control
102(1)
4.5.3 Traction Control
102(1)
4.5.4 Automatic Braking
102(1)
References
103(2)
Chapter 5 Battery Energy Storage
105(54)
5.1 Batteries in Electric and Hybrid Vehicles
106(2)
5.2 Battery Basics
108(4)
5.2.1 Battery Cell Structure
108(1)
5.2.2 Chemical Reactions
109(3)
5.3 Battery Parameters
112(7)
5.3.1 Battery Capacity
112(1)
5.3.2 Open-Circuit Voltage
113(1)
5.3.3 Terminal Voltage
114(1)
5.3.4 Practical Capacity
114(1)
5.3.5 Discharge Rate
115(1)
5.3.6 State of Charge
116(1)
5.3.7 State of Discharge
117(1)
5.3.8 Depth of Discharge
117(1)
5.3.9 Battery Energy
117(1)
5.3.10 Specific Energy
118(1)
5.3.11 Battery Power
118(1)
5.3.12 Specific Power
119(1)
5.3.13 Ragone Plots
119(1)
5.4 Electrochemical Cell Fundamentals
119(9)
5.4.1 Thermodynamic Voltage
120(3)
5.4.2 Electrolysis and Faradaic Current
123(1)
5.4.3 Electrode Kinetics
124(2)
5.4.4 Mass Transport
126(1)
5.4.5 Electrical Double Layer
127(1)
5.4.6 Ohmic Resistance
128(1)
5.4.7 Concentration Polarization
128(1)
5.5 Battery Modeling
128(13)
5.5.1 Electric Circuit Models
129(1)
5.5.1.1 Basic Battery Model
130(2)
5.5.1.2 Run-Time Battery Model
132(1)
5.5.1.3 Impedance-Based Model
133(1)
5.5.1.4 First Principle Model
133(1)
5.5.2 Empirical Models
134(2)
5.5.2.1 Range Prediction with Constant Current Discharge
136(3)
5.5.2.2 Range Prediction with Power Density Approach
139(2)
5.6 Traction Batteries
141(8)
5.6.1 Lead Acid Battery
141(1)
5.6.2 Nickel-Cadmium Battery
142(1)
5.6.3 Nickel-Metal-Hydride (NiMH) Battery
143(1)
5.6.4 Li-Ion Battery
144(1)
5.6.5 Li-Polymer Battery
145(1)
5.6.6 Zinc-Air Battery
146(1)
5.6.7 Sodium-Sulfur Battery
146(1)
5.6.8 Sodium-Metal-Chloride Battery
146(1)
5.6.9 Research and Development for Advanced Batteries
147(2)
5.7 Battery Pack Management
149(10)
5.7.1 Battery Management System
150(1)
5.7.2 SoC Measurement
151(1)
5.7.3 Battery Cell Balancing
152(1)
5.7.4 Battery Charging
153(1)
Problems
154(2)
References
156(3)
Chapter 6 Alternative Energy Storage
159(20)
6.1 Fuel Cells
159(10)
6.1.1 Fuel Cell Characteristics
161(1)
6.1.2 Fuel Cell Types
162(1)
6.1.2.1 Alkaline Fuel Cell
162(1)
6.1.2.2 Proton Exchange Membrane Fuel Cell
162(1)
6.1.2.3 Direct Methanol Fuel Cell
162(1)
6.1.2.4 Phosphoric Acid Fuel Cell
162(1)
6.1.2.5 Molten Carbonate Fuel Cell
162(1)
6.1.2.6 Solid Oxide Fuel Cell
162(2)
6.1.3 Fuel Cell Model
164(1)
6.1.4 Hydrogen Storage Systems
164(1)
6.1.5 Reformers
165(1)
6.1.6 Fuel Cell Electric Vehicle
166(1)
6.1.6.1 Case Study: Toyota Mirai FCEV
167(2)
6.2 Ultracapacitors
169(4)
6.2.1 Symmetrical Ultracapacitors
169(2)
6.2.2 Asymmetrical Ultracapacitors
171(1)
6.2.3 Ultracapacitor Modeling
172(1)
6.3 Compressed Air Storage
173(1)
6.4 Flywheels
174(5)
Problems
176(1)
References
177(2)
Chapter 7 Electric Machines
179(58)
7.1 Simple Electric Machines
180(6)
7.1.1 Fundamental Machine Phenomena
180(1)
7.1.1.1 Motional Voltage B
180(1)
7.1.1.2 Electromagnetic Force
181(1)
7.1.2 Simple DC Machine
181(1)
7.1.2.1 Induced Voltage
181(2)
7.1.2.2 Force and Torque
183(1)
7.1.2.3 DC Machine Back-EMF and Torque
184(1)
7.1.3 Simple Reluctance Machine
185(1)
7.2 Materials for Electric Machines
186(4)
7.2.1 Conductors
186(1)
7.2.2 Magnetic Materials
187(3)
7.3 DC Machines
190(2)
7.4 Three-Phase AC Machines
192(12)
7.4.1 Sinusoidal Stator Windings
193(2)
7.4.2 Number of Poles
195(1)
7.4.3 Three-Phase Sinusoidal Windings
195(1)
7.4.4 Space Vector Representation
195(4)
7.4.4.1 Interpretation of Space Vectors
199(1)
7.4.4.2 Inverse Relations
199(1)
7.4.4.3 Resultant mmf in a Balanced System
200(1)
7.4.4.4 Mutual Inductance Lm and Induced Stator Voltage
201(1)
7.4.5 Types of AC Machines
202(1)
7.4.6 Dq Modeling
202(2)
7.5 Induction Machines
204(8)
7.5.1 Per-Phase Equivalent Circuit
206(2)
7.5.2 Simplified Torque Expression
208(3)
7.5.3 Regenerative Braking
211(1)
7.6 Permanent Magnet Machines
212(8)
7.6.1 PM Synchronous Motors
213(1)
7.6.1.1 Surface PMSM Flux and Torque
214(3)
7.6.1.2 Interior PMSM Flux and Torque
217(1)
7.6.2 PM Brushless DC Motors
218(1)
7.6.2.1 PM BLDC Machine Modeling
218(2)
7.7 Reluctance Machines
220(7)
7.7.1 Synchronous Reluctance Machines
220(2)
7.7.2 PM Assisted Synchronous Reluctance Machines
222(1)
7.7.3 Switched Reluctance Machines
222(1)
7.7.3.1 SRM Principles of Operation
223(2)
7.7.3.2 Energy Conversion
225(1)
7.7.3.3 Torque Production
226(1)
7.8 Traction IPM Machine Design
227(10)
7.8.1 Initial Machine Sizing: Electromagnetic Design
228(1)
7.8.2 Thermal Analysis
228(1)
7.8.3 Mechanical/Structural Analysis
228(1)
7.8.4 Stator and Winding Designs
229(1)
7.8.5 Rotor Design
230(4)
Problems
234(1)
References
235(2)
Chapter 8 Control of AC Machines
237(28)
8.1 Vector Control of AC Motors
237(2)
8.2 AC Machine Modeling for Controls
239(5)
8.2.1 Rotating Reference Frame
240(1)
8.2.2 Induction Machine dq Model
241(1)
8.2.3 Power and Electromagnetic Torque
242(2)
8.3 Induction Machine Vector Control
244(5)
8.3.1 Rotor-Flux-Oriented Vector Control
244(2)
8.3.2 Direct and Indirect Vector Controls
246(1)
8.3.2.1 Direct Vector Control
246(2)
8.3.2.2 Indirect Vector Control
248(1)
8.3.2.3 Vector Control Implementation
248(1)
8.4 PM Synchronous Machine Vector Control
249(8)
8.4.1 Voltage and Torque in Reference Frames
249(1)
8.4.2 PMSM Simulation Model
250(1)
8.4.3 PM Synchronous Machine Drives
251(1)
8.4.3.1 Flux Weakening
252(1)
8.4.3.2 Current and Voltage Controllers
252(1)
8.4.4 IPM Synchronous Machine Controls
253(1)
8.4.4.1 Current Constraint
253(1)
8.4.4.2 Voltage Constraint
254(1)
8.4.4.3 Maximum Torque per Ampere (MTPA)
254(1)
8.4.4.4 Maximum Torque per Voltage (MPTV)
255(1)
8.4.4.5 Characteristic Current, Finite Drive System and Infinite Drive System
255(2)
8.5 Current Control Methods
257(3)
8.5.1 Hysteresis Current Controller
257(2)
8.5.2 PI Current Regulator
259(1)
8.6 SRM Controls
260(5)
8.6.1 Control Parameters
261(1)
8.6.1.1 Advance Angle Calculation
261(1)
8.6.1.2 Current-Controlled Drive
262(1)
Problems
262(2)
References
264(1)
Chapter 9 Power Electronic Converters
265(42)
9.1 Power Electronic Switches
265(8)
9.1.1 Diode
267(1)
9.1.2 BJT
267(1)
9.1.3 MOSFET
267(1)
9.1.4 JFET
268(1)
9.1.5 IGBT
268(1)
9.1.6 Bi-directional Switch
269(1)
9.1.7 Electrical Properties
269(3)
9.1.8 Si, SiC and GaN Power Devices
272(1)
9.2 DC/DC Converters
273(11)
9.2.1 Non-isolated DC/DC Converters
274(1)
9.2.1.1 Buck Converter
275(1)
9.2.1.2 Boost Converter
276(1)
9.2.1.3 Buck-Boost Converter
276(2)
9.2.1.4 Fourth-Order DC/DC converters
278(1)
9.2.1.5 Cascading of Converters
278(1)
9.2.1.6 Synchronous Rectification
279(1)
9.2.2 Isolated DC/DC Converters
280(4)
9.3 EV Powertrain Converters
284(15)
9.3.1 Powertrain Boost Converter
285(3)
9.3.2 Traction Inverter
288(1)
9.3.2.1 Power Device Selection
289(1)
9.3.2.2 Busbar and Packaging
290(1)
9.3.2.3 DC Bus Filtering
291(1)
9.3.2.4 Gate Drive Design
292(1)
9.3.2.5 Controller and Sensors
293(1)
9.3.2.6 Thermal Design
294(3)
9.3.3 High- to Low-Voltage DC/DC Converter
297(1)
9.3.4 On-Board Battery Charger
297(2)
9.4 Cell-Balancing Converters
299(8)
9.4.1 Passive Balancing Methods
299(2)
9.4.2 Active Balancing Methods
301(1)
9.4.2.1 Individual DC/DC Converter
302(1)
9.4.2.2 Centralized DC/DC Converter
303(1)
9.4.2.3 Current Diverter DC/DC Converter
304(1)
References
305(2)
Chapter 10 Electric Motor Drives
307(36)
10.1 Electric Drive Components
307(1)
10.2 DC Drives
308(12)
10.2.1 Two-Quadrant Chopper
308(2)
10.2.2 Open Loop Drive
310(2)
10.2.2.1 Steady-State Analysis of Quadrant 1
312(1)
10.2.2.2 Ripple Reduction in ia
313(1)
10.2.2.3 Acceleration (Continuous Conduction Mode, CCM)
314(1)
10.2.2.4 Acceleration (Discontinuous Conduction Mode, DCM)
315(1)
10.2.2.5 Acceleration (Uncontrollable Mode, UNCM)
316(1)
10.2.2.6 Braking Operation (CCM in Steady State)
316(3)
10.2.2.7 Regenerative Power
319(1)
10.3 Operating Point Analysis
320(3)
10.4 AC Drives
323(14)
10.4.1 Six-Step Operation
324(3)
10.4.1.1 Harmonic Analysis
327(1)
10.4.2 Pulse Width Modulation
328(1)
10.4.2.1 Sinusoidal PWM
328(2)
10.4.2.2 Harmonics in Sinusoidal PWM
330(1)
10.4.2.3 Space Vector (SV) PWM
330(3)
10.4.2.4 Generation of SV PWM Switching Signals
333(4)
10.5 SRM Drives
337(6)
Problems
338(4)
References
342(1)
Chapter 11 Vehicle Controllers and Communication
343(24)
11.1 Vehicle Controllers
343(5)
11.1.1 Microcontroller Types
344(1)
11.1.2 Microcontroller Components
345(1)
11.1.2.1 Central Processing Unit
345(1)
11.1.2.2 Memory and Registers
346(1)
11.1.2.3 Timers and Counters
346(1)
11.1.2.4 Peripherals
347(1)
11.1.3 Functional Safety Standard ISO 26262
347(1)
11.2 Controller Software Development
348(5)
11.2.1 AUTOSAR
348(1)
11.2.2 Software Development Tools
349(1)
11.2.3 Application Controller Implementation
350(1)
11.2.3.1 Motor Controller
350(3)
11.3 Vehicle Communications
353(3)
11.3.1 OSI Seven-Layer Model
353(2)
11.3.2 In-Vehicle Communications
355(1)
11.4 Controller Area Network
356(11)
11.4.1 CAN Transfer Protocol
357(1)
11.4.2 CAN Transfer Layer
358(1)
11.4.2.1 Bit Timing
358(1)
11.4.2.2 CAN Message Frames
359(2)
11.4.2.3 Message Arbitration
361(1)
11.4.2.4 Error Detection and Error Signaling
361(1)
11.4.3 CAN Physical Layer
362(1)
11.4.4 CAN Programming
363(3)
References
366(1)
Chapter 12 Electric Vehicles and the Power Grid
367(22)
12.1 Vehicle Grid Interface
367(2)
12.1.1 G2V, V2G, V2V and V2H Frameworks
368(1)
12.2 Electric Vehicle Charging
369(10)
12.2.1 DC Fast Chargers
370(1)
12.2.1.1 480 V Fast Charger
370(1)
12.2.1.2 MV Fast Charger
371(5)
12.2.2 Electric Vehicle Charging Station
376(2)
12.2.3 Grid Impacts of Fast Chargers
378(1)
12.3 Electric Vehicles in Microgrids
379(10)
12.3.1 Microgrids and Controls
379(1)
12.3.1.1 Primary- and Secondary-Level Controls
379(1)
12.3.1.2 Droop-Based Controls
380(2)
12.3.1.3 Oscillator-Based Controls
382(1)
12.3.1.4 Tertiary Control
382(1)
12.3.2 V2H and H2V Power Converter
383(1)
12.3.3 Solar Generation Integration with Electric Vehicles
384(1)
12.3.3.1 Coordinated Control of Solar PV Generation, Storage and PEV
385(2)
References
387(2)
Chapter 13 Internal Combustion Engines
389(24)
13.1 Heat Engines
389(7)
13.1.1 Reciprocating Engines
390(2)
13.1.2 Practical and Air-Standard Cycles
392(1)
13.1.2.1 Air-Standard Otto Cycle
392(2)
13.1.2.2 Air-Standard Diesel Cycle
394(1)
13.1.3 Gas Turbine Engines
395(1)
13.2 BMEP and BSFC
396(2)
13.3 Vehicle Fuel Economy
398(3)
13.3.1 Fuel Economy in Hybrids
400(1)
13.4 Emission Control System
401(12)
13.4.1 Generation of Pollutants
401(2)
13.4.2 Effect of Air-fuel Ratio on Emissions
403(1)
13.4.3 NO, Flow Rate
404(3)
13.4.4 Emission Control Components
407(1)
13.4.4.1 Exhaust Gas Recirculation
407(1)
13.4.4.2 Catalytic Converter
407(1)
13.4.5 Treatment of Diesel Exhaust Emissions
408(1)
13.4.5.1 Diesel Oxidation Catalysts
408(1)
13.4.5.2 Diesel Particulate Filters
409(1)
13.4.5.3 Methods of NOx Reduction
409(2)
Problems
411(1)
References
411(2)
Chapter 14 Power Transmission, Brakes and Cooling Systems
413(32)
14.1 Power Transmission Components
413(2)
14.1.1 Electric Vehicle Powertrain
414(1)
14.2 Gears
415(8)
14.2.1 Gear Ratio
416(3)
14.2.2 Torque-Speed Characteristics
419(2)
14.2.3 Planetary Gear Set
421(2)
14.3 Clutches
423(1)
14.4 Automobile Differential
423(1)
14.5 Transmission
424(5)
14.5.1 Manual Transmission
425(1)
14.5.2 Automatic Transmission
426(1)
14.5.2.1 Torque Converter
426(1)
14.5.2.2 Automatic Transmission in Hybrids
427(1)
14.5.3 Continuously Variable Transmission
427(2)
14.5.4 eCVT/HEV Transmission
429(1)
14.6 Vehicle Brakes
429(7)
14.6.1 Conventional Brake System
429(4)
14.6.2 Electromechanical Brake System
433(3)
14.7 Cooling Systems
436(9)
14.7.1 Climate Control System
436(1)
14.7.1.1 Vapor Compression Refrigeration Cycle
437(2)
14.7.1.2 Vehicle Air-Conditioning System
439(1)
14.7.2 Powertrain Component Cooling System
440(3)
Problems
443(1)
References
443(2)
Chapter 15 Hybrid Vehicle Control Strategy
445(22)
15.1 Vehicle Supervisory Controller
445(1)
15.2 Mode Selection Strategy
446(8)
15.2.1 Mechanical Power-Split Hybrid Modes
448(1)
15.2.1.1 Electric Only (Low Speeds, Reverse, Battery Charging)
449(1)
15.2.1.2 Engine Starting (Low Speeds)
450(1)
15.2.1.3 Parallel Mode (Heavy Acceleration)
450(1)
15.2.1.4 Power-Split Mode (Cruise, Light Acceleration)
451(1)
15.2.1.5 Engine Brake Mode (Driver Selectable Mode)
451(1)
15.2.1.6 Regeneration Mode (Vehicle Braking)
452(1)
15.2.2 Series-Parallel 2 × 2 Hybrid Modes
452(1)
15.2.2.1 Electric Only (Low Speeds, Reverse, Battery Charging)
453(1)
15.2.2.2 Series Mode (Lower Speeds)
453(1)
15.2.2.3 Power-Split Mode (Cruise, Light Acceleration)
453(1)
15.2.2.4 Parallel Mode (Heavy Acceleration)
453(1)
15.3 Modal Control Strategies
454(13)
15.3.1 Series Control
454(1)
15.3.2 Parallel Control
455(2)
15.3.3 Series-Parallel Control
457(1)
15.3.3.1 Mechanical Power-Split IC Engine Control
458(1)
15.3.3.2 Series-Parallel 2 × 2 Control
459(1)
15.3.4 Energy Storage System Control
460(2)
15.3.5 Regeneration Control
462(2)
Problems
464(1)
References
465(2)
Index 467
Iqbal Husain is the ABB Distinguished Professor in the department of Electrical & Computer Engineering at North Carolina State University, Raleigh, NC. He is also the Director of the FREEDM NSF Engineering Research Center and the Director of Power Electronics for the PowerAmerica Institute at North Carolina State University.