Electric Motors and Drives: Fundamentals, Types and Applications 5th edition [Mīkstie vāki]

(Department of Electrical and Electronic Engineering, University of Leeds, UK), (Independent Consultant in Power Electronics)
  • Formāts: Paperback / softback, 511 pages, height x width: 229x152 mm, weight: 820 g
  • Izdošanas datums: 04-Aug-2019
  • Izdevniecība: Newnes (an imprint of Butterworth-Heinemann Ltd )
  • ISBN-10: 0081026153
  • ISBN-13: 9780081026151
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 69,10 €
  • Pievienot vēlmju sarakstam
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Ielikt grozā
  • Daudzums:
  • Piegādes laiks - 4-6 nedēļas
  • Formāts: Paperback / softback, 511 pages, height x width: 229x152 mm, weight: 820 g
  • Izdošanas datums: 04-Aug-2019
  • Izdevniecība: Newnes (an imprint of Butterworth-Heinemann Ltd )
  • ISBN-10: 0081026153
  • ISBN-13: 9780081026151
Citas grāmatas par šo tēmu:
Electric Motors and Drives: Fundamentals, Types and Applications, Fifth Edition is intended primarily for non-specialist users or students of electric motors and drives, but many researchers and specialist industrialists have also acknowledged its value in providing a clear understanding of the fundamentals. It bridges the gap between specialist textbooks (too analytical for the average user) and handbooks (full of detail but with little insight) providing an understanding of how each motor and drive system works. The fifth edition has been completely revised, updated and expanded. All of the most important types of motor and drive are covered, including d.c., induction, synchronous (including synchronous reluctance and salient Permanent Magnet), switched reluctance, and stepping. There has been significant innovation in this area since the fourth edition, particularly in the automotive, aircraft and industrial sectors, with novel motor topologies emerging, including hybrid designs that combine permanent magnet and reluctance effects. We now include a physical basis for understanding and quantifying torque production in these machines, and this leads to simple pictures that illuminate the control conditions required to optimise torque. The key converter topologies have been brought together, and the treatment of inverter switching strategies expanded. A new chapter is devoted to the treatment of Field Oriented control, reflecting its increasing importance for all a.c. motor drives. A unique physically-based approach is adopted which builds naturally on the understanding of motor behaviour developed earlier in the book: the largely non-mathematical treatment dispels much of the mystique surrounding what is often regarded as a difficult topic.
Preface xii
1 Electric motors---The basics
1(40)
1.1 Introduction
1(1)
1.2 Producing rotation
1(6)
1.2.1 Magnetic field and magnetic flux
3(1)
1.2.2 Magnetic flux density
4(1)
1.2.3 Force on a conductor
5(2)
1.3 Magnetic circuits
7(8)
1.3.1 Magnetomotive force (m.m.f.)
9(1)
1.3.2 Electric circuit analogy
9(1)
1.3.3 The air-gap
10(1)
1.3.4 Reluctance and air-gap flux densities
11(2)
1.3.5 Saturation
13(1)
1.3.6 Magnetic circuits in motors
14(1)
1.4 Torque production
15(4)
1.4.1 Magnitude of torque
17(1)
1.4.2 The beauty of slotting
17(2)
1.5 Torque and motor volume
19(4)
1.5.1 Specific loadings
19(2)
1.5.2 Torque and rotor volume
21(1)
1.5.3 Output power---Importance of speed
22(1)
1.5.4 Power density (specific output power)
23(1)
1.6 Energy conversion ---Motional e.m.f.
23(4)
1.6.1 Elementary motor---Stationary conditions
24(2)
1.6.2 Power relationships---Conductor moving at constant speed
26(1)
1.7 Equivalent circuit
27(2)
1.7.1 Motoring and generating
28(1)
1.8 Constant voltage operation
29(7)
1.8.1 Behaviour with no mechanical load
30(2)
1.8.2 Behaviour with a mechanical load
32(2)
1.8.3 Relative magnitudes of V and E, and efficiency
34(1)
1.8.4 Analysis of primitive machine---Conclusions
35(1)
1.9 General properties of electric motors
36(2)
1.9.1 Operating temperature and cooling
36(1)
1.9.2 Torque per unit volume
36(1)
1.9.3 Power per unit volume and efficiency---Importance of speed
37(1)
1.9.4 Size effects---Specific torque and efficiency
37(1)
1.9.5 Rated voltage
37(1)
1.9.6 Short-term overload
38(1)
1.10 Review questions
38(3)
2 Power electronic converters for motor drives
41(48)
2.1 Introduction
41(2)
2.1.1 General arrangement of drive
42(1)
2.2 Voltage control---D.C. output from d.c. supply
43(10)
2.2.1 Switching control
43(3)
2.2.2 Transistor chopper
46(2)
2.2.3 Chopper with inductive load---Overvoltage protection
48(3)
2.2.4 Boost converter
51(2)
2.3 D.C. from a.c.---Controlled rectification
53(9)
2.3.1 The thyristor
53(1)
2.3.2 Single pulse rectifier
54(1)
2.3.3 Single-phase fully-controlled converter---Output voltage and control
55(5)
2.3.4 Three-phase fully-controlled converter
60(1)
2.3.5 Output voltage range
61(1)
2.3.6 Firing circuits
62(1)
2.4 A.C. from d.c.---Inversion
62(15)
2.4.1 Single-phase inverter
62(3)
2.4.2 Output voltage control
65(5)
2.4.3 Three-phase inverter
70(3)
2.4.4 Multi-level inverter
73(2)
2.4.5 Braking
75(1)
2.4.6 Active front end
76(1)
2.5 A.C. from a.c.
77(3)
2.5.1 The cycloconverter
77(2)
2.5.2 The matrix converter
79(1)
2.6 Inverter switching devices
80(3)
2.6.1 Bipolar junction transistor (BJT)
81(1)
2.6.2 Metal oxide semiconductor field effect transistor (MOSFET)
82(1)
2.6.3 Insulated gate bipolar transistor (IGBT)
82(1)
2.7 Converter waveforms, acoustic noise, and cooling
83(3)
2.7.1 Cooling of switching devices---Thermal resistance
83(2)
2.7.2 Arrangement of heatsinks and forced-air cooling
85(1)
2.8 Review questions
86(3)
3 D.C. motors
89(42)
3.1 Introduction
89(2)
3.2 Torque production
91(4)
3.2.1 Function of the commutator
93(1)
3.2.2 Operation of the commutator---interpoies
94(1)
3.3 Motional e.m.f.
95(5)
3.3.1 Equivalent circuit
99(1)
3.4 D.C. motor---steady-state characteristics
100(11)
3.4.1 No-load speed
101(1)
3.4.2 Performance calculation---example
101(2)
3.4.3 Behaviour when loaded
103(4)
3.4.4 Base speed and field weakening
107(2)
3.4.5 Armature reaction
109(1)
3.4.6 Maximum output power
110(1)
3.5 Transient behaviour
111(4)
3.5.1 Dynamic behaviour and time-constants
112(3)
3.6 Four quadrant operation and regenerative braking
115(4)
3.6.1 Full speed regenerative reversal
117(2)
3.6.2 Dynamic braking
119(1)
3.7 Shunt and series motors
119(5)
3.7.1 Shunt motor---steady-state operating characteristics
120(2)
3.7.2 Series motor---steady-state operating characteristics
122(1)
3.7.3 Universal motors
123(1)
3.8 Self-excited d.c. machine
124(2)
3.9 Toy motors
126(1)
3.10 Review questions
127(4)
4 D.C. motor drives
131(30)
4.1 Introduction
131(1)
4.2 Thyristor d.c. drives---general
132(12)
4.2.1 Motor operation with converter supply
133(1)
4.2.2 Motor current waveforms
134(1)
4.2.3 Discontinuous current
135(4)
4.2.4 Converter output impedance: Overlap
139(1)
4.2.5 Four-quadrant operation and inversion
140(1)
4.2.6 Single-converter reversing drives
141(1)
4.2.7 Double-converter reversing drives
142(1)
4.2.8 Power factor and supply effects
143(1)
4.3 Control arrangements for d.c. drives
144(7)
4.3.1 Current limits and protection
146(2)
4.3.2 Torque control
148(1)
4.3.3 Speed control
148(2)
4.3.4 Overall operating region
150(1)
4.3.5 Armature voltage feedback and IR compensation
151(1)
4.3.6 Drives without current control
151(1)
4.4 Chopper-fed d.c. motor drives
151(3)
4.4.1 Performance of chopper-fed d.c. motor drives
152(2)
4.4.2 Torque-speed characteristics and control arrangements
154(1)
4.5 D.C. servo drives
154(4)
4.5.1 Servomotors
155(1)
4.5.2 Position control
156(2)
4.6 Digitally-controlled drives
158(1)
4.7 Review questions
159(2)
5 Induction motors---Rotating field, slip and torque
161(30)
5.1 Introduction
161(2)
5.1.1 Outline of approach
162(1)
5.2 The rotating magnetic field
163(13)
5.2.1 Production of a rotating magnetic field
165(1)
5.2.2 Field produced by each phase-winding
166(3)
5.2.3 Resultant three-phase field
169(2)
5.2.4 Direction of rotation
171(1)
5.2.5 Main (air-gap) flux and leakage flux
171(1)
5.2.6 Magnitude of rotating flux wave
172(3)
5.2.7 Excitation power and VA
175(1)
5.2.8 Summary
176(1)
5.3 Torque production
176(9)
5.3.1 Rotor construction
176(2)
5.3.2 Slip
178(1)
5.3.3 Rotor induced e.m.f. and current
179(1)
5.3.4 Torque
180(1)
5.3.5 Rotor currents and torque---small slip
180(2)
5.3.6 Rotor currents and torque---large slip
182(2)
5.3.7 Generating---Negative slip
184(1)
5.4 Influence of rotor current on flux
185(2)
5.4.1 Reduction of flux by rotor current
185(2)
5.5 Stator current-speed characteristics
187(2)
5.6 Review questions
189(2)
6 Induction motor---Operation from 50/60 Hz supply
191(38)
6.1 Introduction
191(1)
6.2 Methods of starting cage motors
191(7)
6.2.1 Direct starting---Problems
191(3)
6.2.2 Star/delta (wye/mesh) starter
194(1)
6.2.3 Autotransformer starter
195(1)
6.2.4 Resistance or reactance starter
196(1)
6.2.5 Solid-state soft starting
196(2)
6.2.6 Starting using a variable-frequency inverter
198(1)
6.3 Run-up and stable operating regions
198(6)
6.3.1 Harmonic effects---Skewing
200(2)
6.3.2 High inertia loads---Overheating
202(1)
6.3.3 Steady-state rotor losses and efficiency
202(1)
6.3.4 Steady-state stability---Pull-out torque and stalling
203(1)
6.4 Torque-speed curves-Influence of rotor parameters
204(4)
6.4.1 Cage rotor
204(1)
6.4.2 Double cage and deep bar rotors
205(2)
6.4.3 Starting and run-up of slipring motors
207(1)
6.5 Influence of supply voltage on torque-speed curve
208(2)
6.6 Generating
210(6)
6.6.1 Generating region
210(1)
6.6.2 Self-excited induction generator
211(2)
6.6.3 Doubly-fed induction machine for wind power generation
213(3)
6.7 Braking
216(1)
6.7.1 Plug reversal and plug braking
216(1)
6.7.2 Injection braking
217(1)
6.8 Speed control (without varying the stator supply frequency)
217(3)
6.8.1 Pole-changing motors
218(1)
6.8.2 Voltage control of high-resistance cage motors
219(1)
6.8.3 Speed control of wound-rotor motors
220(1)
6.8.4 Slip energy recovery
220(1)
6.9 Power-factor control and energy optimisation
220(2)
6.10 Single-phase induction motors
222(3)
6.10.1 Principle of operation
222(1)
6.10.2 Capacitor run motors
223(1)
6.10.3 Split-phase motors
224(1)
6.10.4 Shaded pole motors
224(1)
6.11 Power range
225(2)
6.11.1 Scaling down---The excitation problem
226(1)
6.12 Review questions
227(2)
7 Variable frequency operation of induction motors
229(32)
7.1 Introduction
229(2)
7.2 Variable frequency operation
231(9)
7.2.1 Steady-state operation---Importance of achieving full flux
232(2)
7.2.2 Torque-speed characteristics
234(1)
7.2.3 Limitations imposed by the inverter---Constant torque and constant power regions
235(2)
7.2.4 Limitations imposed by the motor
237(1)
7.2.5 Four quadrant capability
237(3)
7.3 Practical aspects of inverter-fed drives
240(8)
7.3.1 PWM voltage source inverter
240(3)
7.3.2 Current source induction motor drives
243(1)
7.3.3 Performance of inverter-fed drives
244(4)
7.4 Effect of inverter on the induction motor
248(4)
7.4.1 Acoustic noise
248(1)
7.4.2 Motor insulation and the impact of long inverter-motor cables
248(1)
7.4.3 Losses and impact on motor rating
249(1)
7.4.4 Bearing currents
250(1)
7.4.5 Inverter grade' induction motors
251(1)
7.5 Utility supply effects
252(5)
7.5.1 Harmonic currents
252(4)
7.5.2 Power factor
256(1)
7.6 Inverter and motor protection
257(1)
7.7 Review questions
258(3)
8 Field oriented control of induction motors
261(46)
8.1 Introduction
261(1)
8.2 Essential preliminaries
262(6)
8.2.1 Space phasor representation of m.m.f. waves
262(3)
8.2.2 Transformation of reference frames
265(1)
8.2.3 Transient and steady-states in electric circuits
266(2)
8.3 Circuit modelling of the induction motor
268(4)
8.3.1 Coupled circuits, induced EMF, and flux linkage
268(1)
8.3.2 Self and mutual inductance
269(1)
8.3.3 Obtaining torque from a circuit model
270(2)
8.3.4 Finding the rotor currents
272(1)
8.4 Steady-state torque under current-fed conditions
272(7)
8.4.1 Torque vs slip frequency---Constant stator current
275(2)
8.4.2 Torque vs slip frequency---Constant rotor flux linkage
277(1)
8.4.3 Flux and torque components of stator current
278(1)
8.5 Dynamic torque control
279(8)
8.5.1 Special property of closely-coupled circuits
279(4)
8.5.2 Establishing the flux
283(2)
8.5.3 Mechanism of torque control
285(2)
8.6 Implementation of field-oriented control
287(12)
8.6.1 PWM controller/vector modulator
287(3)
8.6.2 Torque control scheme
290(4)
8.6.3 Transient operation
294(1)
8.6.4 Acceleration from rest
295(2)
8.6.5 Deriving the rotor flux angle
297(2)
8.7 Direct torque control
299(5)
8.7.1 Outline of operation
300(1)
8.7.2 Control of stator flux and torque
301(3)
8.8 Review questions
304(3)
9 Synchronous permanent magnet and reluctance motors and drives
307(68)
9.1 Introduction
307(1)
9.2 Synchronous motor types
308(5)
9.2.1 Excited-rotor motors
310(1)
9.2.2 Permanent magnet motors
311(1)
9.2.3 Reluctance motors
311(1)
9.2.4 Hysteresis motors
312(1)
9.3 Torque production
313(16)
9.3.1 Excited rotor motor
313(5)
9.3.2 Permanet magnet motor
318(1)
9.3.3 Reluctance motor
318(7)
9.3.4 Salient pole synchronous motor
325(1)
9.3.5 Salient permanent magnet motor (`PM/Rel' motor)
326(3)
9.4 Utility-fed synchronous motors
329(1)
9.4.1 Excited rotor motor
329(6)
9.4.2 Permanent magnet motor
335(1)
9.4.3 Reluctance motor
335(4)
9.4.4 Salient pole motor
339(1)
9.4.5 Starting on utility supply
340(1)
9.5 Variable frequency operation of synchronous motors
341(8)
9.5.1 Phasor diagram of PM motor
342(3)
9.5.2 Variable speed and load conditions
345(4)
9.6 Synchronous motor drives
349(12)
9.6.1 Introduction
349(2)
9.6.2 Excited rotor motor
351(7)
9.6.3 Permanent magnet motor
358(2)
9.6.4 Reluctance motor
360(1)
9.6.5 Salient permanent magnet motor
361(1)
9.7 Performance of permanent magnet motors
361(7)
9.7.1 Advantages of PM motors
362(2)
9.7.2 Industrial PM motors
364(1)
9.7.3 Summary of performance characteristics
365(1)
9.7.4 Limits of operation of a brushless PM motor
366(1)
9.7.5 Brushless PM generators
367(1)
9.8 Emerging developments in permanent magnet motors
368(4)
9.8.1 Advantages of high pole number
368(1)
9.8.2 Segmented core and concentrated windings
369(1)
9.8.3 Fractional slot windings
370(2)
9.9 Review questions
372(3)
10 Stepping and switched reluctance motors
375(36)
10.1 Introduction
375(1)
10.2 Stepping motors
376(4)
10.2.1 Open-loop position control
377(1)
10.2.2 Generation of step pulses and motor response
377(1)
10.2.3 High speed running and ramping
378(2)
10.3 Principle of motor operation
380(6)
10.3.1 Variable reluctance motor
381(1)
10.3.2 Hybrid motor
382(3)
10.3.3 Summary
385(1)
10.4 Motor characteristics
386(5)
10.4.1 Static torque-displacement curves
386(1)
10.4.2 Single-stepping
387(1)
10.4.3 Step position error, and holding torque
388(1)
10.4.4 Half stepping
389(1)
10.4.5 Step division---Mini-stepping
390(1)
10.5 Steady-state characteristics---Ideal (constant-current) drive
391(3)
10.5.1 Requirements of drive
391(2)
10.5.2 Pull-out torque under constant-current conditions
393(1)
10.6 Drive circuits and pull-out torque--speed curves
394(7)
10.6.1 Constant voltage drive
395(1)
10.6.2 Current-forced drive
396(2)
10.6.3 Constant current (chopper) drive
398(1)
10.6.4 Resonances and instability
399(2)
10.7 Transient performance
401(3)
10.7.1 Step response
401(1)
10.7.2 Starting from rest
402(1)
10.7.3 Optimum acceleration and closed-loop control
403(1)
10.8 Switched reluctance motor drives
404(5)
10.8.1 Principle of operation
404(2)
10.8.2 Torque prediction and control
406(2)
10.8.3 Power converter and overall drive characteristics
408(1)
10.9 Review questions
409(2)
11 Motor/drive selection
411(68)
11.1 Introduction
411(1)
11.2 Power ratings and capabilities
411(2)
11.3 Drive characteristics
413(4)
11.3.1 Maxi mum speed and speed range
415(2)
11.4 Load requirements---torque-speed characteristics
417(5)
11.4.1 Constant-torque load
417(4)
11.4.2 Inertia matching
421(1)
11.4.3 Fan and pump loads
422(1)
11.5 General application considerations
422(4)
11.5.1 Regenerative operation and braking
422(1)
11.5.2 Duty cycle and rating
423(1)
11.5.3 Enclosures and cooling
424(1)
11.5.4 Dimensional standards
425(1)
11.5.5 Supply interaction and harmonics
426(1)
11.6 Review questions
426(53)
Appendix: Solutions to review questions 479(2)
Further reading 481(2)
Index 483
Austin Hughes was a long-time member of the innovative motors and drives research team at the University of Leeds, UK, and has established a reputation for an informal style that opens up complex subjects to a wide readership, including students and managers as well as technicians and engineers. Bill Drury is an independent consultant in power electronics, electrical machines and drives (PEMD). He has 45 years industrial PEMD experience - Siemens, Rolls-Royce and for 20 years Technical Director of Control Techniques. He is a Chartered Engineer and a Fellow of the Institution of Engineering and Technology (IET). He is a Visiting Professor of Innovation at Bristol University and a Visiting Professor at Newcastle University.