Atjaunināt sīkdatņu piekrišanu

E-grāmata: Electrical Solitons: Theory, Design, and Applications

(NC State University, Raleigh, USA), (Harvard University, Cambridge, Massachusetts, USA)
  • Formāts: 264 pages
  • Sērija : Devices, Circuits, and Systems
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781351833691
  • Formāts - EPUB+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 264 pages
  • Sērija : Devices, Circuits, and Systems
  • Izdošanas datums: 03-Sep-2018
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781351833691

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The dominant medium for soliton propagation in electronics, nonlinear transmission line (NLTL) has found wide application as a testbed for nonlinear dynamics and KdV phenomena as well as for practical applications in ultra-sharp pulse/edge generation and novel nonlinear communication schemes in electronics. While many texts exist covering solitons in general, there is as yet no source that provides a comprehensive treatment of the soliton in the electrical domain.

Drawing on the award winning research of Carnegie Mellons David S. Ricketts, Electrical Solitons Theory, Design, and Applications is the first text to focus specifically on KdV solitons in the nonlinear transmission line. Divided into three parts, the book begins with the foundational theory for KdV solitons, presents the core underlying mathematics of solitons, and describes the solution to the KdV equation and the basic properties of that solution, including collision behaviors and amplitude-dependent velocity. It also examines the conservation laws of the KdV for loss-less and lossy systems.

The second part describes the KdV soliton in the context of the NLTL. It derives the lattice equation for solitons on the NLTL and shows the connection with the KdV equation as well as the governing equations for a lossy NLTL. Detailing the transformation between KdV theory and what we measure on the oscilloscope, the book demonstrates many of the key properties of solitons, including the inverse scattering method and soliton damping.

The final part highlights practical applications such as sharp pulse formation and edge sharpening for high speed metrology as well as high frequency generation via NLTL harmonics. It describes challenges to realizing a robust soliton oscillator and the stability mechanisms necessary, and introduces three prototypes of the circular soliton oscillator using discrete and integrated platforms.
List of Figures
ix
List of Tables
xiii
Preface xv
I Electrical Solitons: Theory
1(68)
1 Introduction
3(10)
1.1 The "Solitons"
7(1)
1.2 A Brief Overview and History of the Soliton
7(6)
2 The KdV Soliton
13(22)
2.1 The Solitary Wave Solution
13(2)
2.2 The Periodic Soliton: The Cnoidal Wave Solution
15(5)
2.2.1 Asymptotics of the Cnoidal Wave
19(1)
2.2.2 The Cnoidal Wave vs. the Periodic Sech2 Wave
20(1)
2.3 Transient Dynamics of the KdV
20(6)
2.3.1 Solitary Wave ≠ Soliton
20(2)
2.3.2 Soliton Collisions
22(4)
2.4 Summary
26(2)
2.A Elliptic Integrals, Functions and Their Link to Differential Equations
28(7)
2.A.1 Arclength of a Circle
28(2)
2.A.2 Arclength of an Ellipse
30(1)
2.A.3 Elliptic Functions
31(1)
2.A.4 Example PDEs
32(3)
3 The Heart of the Soliton: Inverse Scattering
35(26)
3.1 Inverse Scattering Method
36(1)
3.2 A Math Problem
36(2)
3.3 KdV Solution via the Inverse Scattering Method
38(4)
3.4 Solution of the KdV Initial Value Problem
42(5)
3.4.1 The Eigenvalue Problem Using the Schrodinger Operator
42(5)
3.5 Asymptotic Solution to the Inverse Scattering Method
47(8)
3.5.1 Reflectionless Potentials
48(4)
3.5.2 Non-Reflectionless Potentials
52(3)
3.6 Soliton Definition
55(1)
3.7 Transient Solutions of the KdV
56(2)
3.7.1 Hirota's Direct Method
56(2)
3.7.2 Transient Solution Summary
58(1)
3.8 The Three Faces of the KdV Soliton
58(3)
4 Conservative and Dissipative Soliton Systems
61(8)
4.1 Conservation Laws
61(2)
4.2 The Lossy KdV
63(6)
II Electrical Solitons: Design
69(34)
5 Electrical Nonlinear Transmission Line and Electrical Solitons
71(14)
5.1 The Nonlinear Transmission Line
71(2)
5.2 Toda Lattice
73(1)
5.3 NLTL Lattice
74(3)
5.4 KdV Approximation of the NLTL
77(3)
5.5 The Lossy NLTL
80(5)
6 The Electrical Soliton in the Lab
85(18)
Michael W. Chen
En Shi
6.1 Toda Lattice, NLTL Lattice and KdV Solitons
86(1)
6.2 Scaling and Transformations: Lab → NLTL → KdV
87(6)
6.3 NLTL Characterization
93(3)
6.4 Inverse Scattering on the NLTL
96(1)
6.5 Soliton Damping on the NLTL
97(3)
6.6 Numerical Accuracy
100(3)
III Electrical Solitons: Application
103(136)
7 NLTL as a Two-Port System
105(14)
Xiaofeng Li
Michael W. Chen
7.1 Pulse Compression and Tapered NLTL
105(5)
7.2 Shockwave NLTL
110(7)
7.3 Harmonic Generation
117(1)
7.4 Summary
118(1)
8 The Soliton Oscillator
119(22)
8.1 Basic Topology
119(2)
8.2 Instability Mechanisms
121(1)
8.2.1 Case I --- Voltage Limiting Amplifier
121(1)
8.2.2 Case II --- Linear Amplifier
122(1)
8.3 Identification of Three Instability Mechanisms
122(3)
8.4 NLTL Soliton Oscillator --- Working Model
125(4)
8.4.1 Operating Principles
125(1)
8.4.1.1 Bias adjustment
126(1)
8.4.1.2 Amplifier operation
126(1)
8.4.2 Stability Mechanisms --- Solution
127(1)
8.4.2.1 Distortion reduction
127(1)
8.4.2.2 Perturbation rejection
127(2)
8.4.2.3 Single mode selection
129(1)
8.5 System Design and Amplifier Dynamics
129(11)
8.6 Summary
140(1)
9 The Circular Soliton Oscillator
141(32)
9.1 CMOS, Low MHz Prototype
141(13)
9.1.1 Oscillator Implementation
142(1)
9.1.1.1 Amplifier design
143(1)
9.1.1.2 NLTL design
144(1)
9.1.1.3 Termination
144(2)
9.1.2 Experimental Verification
146(1)
9.1.2.1 Adaptive bias control
146(1)
9.1.2.2 Startup soliton dynamics
147(1)
9.1.2.3 Perturbation rejection
147(4)
9.1.2.4 Steady-state soliton oscillation
151(1)
9.1.2.5 Soliton propagation in steady-state
151(3)
9.2 Bipolar, Microwave Prototype
154(11)
9.2.1 Oscillator Implementation
157(5)
9.2.2 Experimental Results
162(3)
9.3 CMOS, Chip-scale, GHz Prototype
165(5)
9.3.1 Oscillator Implementation
165(2)
9.3.2 Test and Measurement
167(1)
9.3.3 Experimental Results
167(3)
9.4 Summary
170(3)
10 The Reflection Soliton Oscillator
173(24)
O. Ozgur Yildirim
10.1 Operating Principle
175(6)
10.1.1 Reflection at the Amplifier End
176(3)
10.1.2 Reflection at the Open End
179(2)
10.2 Amplifier Design
181(5)
10.2.1 Need for an Adaptive Bias Scheme
181(1)
10.2.2 Reflection Amplifier with an Adaptive Bias
181(5)
10.2.3 Improved R-C Network
186(1)
10.3 Experiments
186(7)
10.4 Comparison with Haus's Oscillator
193(1)
10.5 Summary
194(3)
11 Chaotic Soliton Oscillator and Chaotic Communications
197(14)
O. Ozgur Yildirim
Nan Sun
Xiaofeng Li
11.1 Chaos and Chaotic Communications
198(2)
11.2 Chaotic Soliton Oscillator
200(2)
11.3 Simulation of the Chaotic Soliton Oscillator
202(1)
11.4 Simulation of Chaotic Binary Communication
203(5)
11.5 Summary
208(3)
12 Phase Noise of Soliton Oscillators
211(28)
Xiaofeng Li
12.1 Phase Noise Fundamentals
212(3)
12.2 Phase Noise Due to Direct Phase Perturbation
215(10)
12.2.1 Distributed Noise Sources
215(8)
12.2.2 Lumped Noise Sources
223(2)
12.3 Amplitude-to-Phase Noise Conversion
225(4)
12.3.1 Distributed Noise Sources
227(1)
12.3.2 Lumped Noise Sources
228(1)
12.3.3 Indirect vs. Direct Phase Perturbations
229(1)
12.4 Experimental Verification
229(9)
12.4.1 Oscillator Prototypes
229(1)
12.4.2 Phase Noise Measurement
230(2)
12.4.3 Intensity of Noise Sources
232(3)
12.4.4 Measurement-Theory Comparison
235(3)
12.5 Summary
238(1)
Bibliography 239(8)
Index 247
David S. Ricketts is an Assistant Professor of ECE at Carnegie Mellon University in Pittsburgh, Pennsylvania.