|
|
ix | |
|
|
xiii | |
Preface |
|
xv | |
|
I Electrical Solitons: Theory |
|
|
1 | (68) |
|
|
3 | (10) |
|
|
7 | (1) |
|
1.2 A Brief Overview and History of the Soliton |
|
|
7 | (6) |
|
|
13 | (22) |
|
2.1 The Solitary Wave Solution |
|
|
13 | (2) |
|
2.2 The Periodic Soliton: The Cnoidal Wave Solution |
|
|
15 | (5) |
|
2.2.1 Asymptotics of the Cnoidal Wave |
|
|
19 | (1) |
|
2.2.2 The Cnoidal Wave vs. the Periodic Sech2 Wave |
|
|
20 | (1) |
|
2.3 Transient Dynamics of the KdV |
|
|
20 | (6) |
|
2.3.1 Solitary Wave ≠ Soliton |
|
|
20 | (2) |
|
|
22 | (4) |
|
|
26 | (2) |
|
2.A Elliptic Integrals, Functions and Their Link to Differential Equations |
|
|
28 | (7) |
|
2.A.1 Arclength of a Circle |
|
|
28 | (2) |
|
2.A.2 Arclength of an Ellipse |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
32 | (3) |
|
3 The Heart of the Soliton: Inverse Scattering |
|
|
35 | (26) |
|
3.1 Inverse Scattering Method |
|
|
36 | (1) |
|
|
36 | (2) |
|
3.3 KdV Solution via the Inverse Scattering Method |
|
|
38 | (4) |
|
3.4 Solution of the KdV Initial Value Problem |
|
|
42 | (5) |
|
3.4.1 The Eigenvalue Problem Using the Schrodinger Operator |
|
|
42 | (5) |
|
3.5 Asymptotic Solution to the Inverse Scattering Method |
|
|
47 | (8) |
|
3.5.1 Reflectionless Potentials |
|
|
48 | (4) |
|
3.5.2 Non-Reflectionless Potentials |
|
|
52 | (3) |
|
|
55 | (1) |
|
3.7 Transient Solutions of the KdV |
|
|
56 | (2) |
|
3.7.1 Hirota's Direct Method |
|
|
56 | (2) |
|
3.7.2 Transient Solution Summary |
|
|
58 | (1) |
|
3.8 The Three Faces of the KdV Soliton |
|
|
58 | (3) |
|
4 Conservative and Dissipative Soliton Systems |
|
|
61 | (8) |
|
|
61 | (2) |
|
|
63 | (6) |
|
II Electrical Solitons: Design |
|
|
69 | (34) |
|
5 Electrical Nonlinear Transmission Line and Electrical Solitons |
|
|
71 | (14) |
|
5.1 The Nonlinear Transmission Line |
|
|
71 | (2) |
|
|
73 | (1) |
|
|
74 | (3) |
|
5.4 KdV Approximation of the NLTL |
|
|
77 | (3) |
|
|
80 | (5) |
|
6 The Electrical Soliton in the Lab |
|
|
85 | (18) |
|
|
|
6.1 Toda Lattice, NLTL Lattice and KdV Solitons |
|
|
86 | (1) |
|
6.2 Scaling and Transformations: Lab → NLTL → KdV |
|
|
87 | (6) |
|
6.3 NLTL Characterization |
|
|
93 | (3) |
|
6.4 Inverse Scattering on the NLTL |
|
|
96 | (1) |
|
6.5 Soliton Damping on the NLTL |
|
|
97 | (3) |
|
|
100 | (3) |
|
III Electrical Solitons: Application |
|
|
103 | (136) |
|
7 NLTL as a Two-Port System |
|
|
105 | (14) |
|
|
|
7.1 Pulse Compression and Tapered NLTL |
|
|
105 | (5) |
|
|
110 | (7) |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
119 | (22) |
|
|
119 | (2) |
|
8.2 Instability Mechanisms |
|
|
121 | (1) |
|
8.2.1 Case I --- Voltage Limiting Amplifier |
|
|
121 | (1) |
|
8.2.2 Case II --- Linear Amplifier |
|
|
122 | (1) |
|
8.3 Identification of Three Instability Mechanisms |
|
|
122 | (3) |
|
8.4 NLTL Soliton Oscillator --- Working Model |
|
|
125 | (4) |
|
8.4.1 Operating Principles |
|
|
125 | (1) |
|
|
126 | (1) |
|
8.4.1.2 Amplifier operation |
|
|
126 | (1) |
|
8.4.2 Stability Mechanisms --- Solution |
|
|
127 | (1) |
|
8.4.2.1 Distortion reduction |
|
|
127 | (1) |
|
8.4.2.2 Perturbation rejection |
|
|
127 | (2) |
|
8.4.2.3 Single mode selection |
|
|
129 | (1) |
|
8.5 System Design and Amplifier Dynamics |
|
|
129 | (11) |
|
|
140 | (1) |
|
9 The Circular Soliton Oscillator |
|
|
141 | (32) |
|
9.1 CMOS, Low MHz Prototype |
|
|
141 | (13) |
|
9.1.1 Oscillator Implementation |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
144 | (2) |
|
9.1.2 Experimental Verification |
|
|
146 | (1) |
|
9.1.2.1 Adaptive bias control |
|
|
146 | (1) |
|
9.1.2.2 Startup soliton dynamics |
|
|
147 | (1) |
|
9.1.2.3 Perturbation rejection |
|
|
147 | (4) |
|
9.1.2.4 Steady-state soliton oscillation |
|
|
151 | (1) |
|
9.1.2.5 Soliton propagation in steady-state |
|
|
151 | (3) |
|
9.2 Bipolar, Microwave Prototype |
|
|
154 | (11) |
|
9.2.1 Oscillator Implementation |
|
|
157 | (5) |
|
9.2.2 Experimental Results |
|
|
162 | (3) |
|
9.3 CMOS, Chip-scale, GHz Prototype |
|
|
165 | (5) |
|
9.3.1 Oscillator Implementation |
|
|
165 | (2) |
|
9.3.2 Test and Measurement |
|
|
167 | (1) |
|
9.3.3 Experimental Results |
|
|
167 | (3) |
|
|
170 | (3) |
|
10 The Reflection Soliton Oscillator |
|
|
173 | (24) |
|
|
|
175 | (6) |
|
10.1.1 Reflection at the Amplifier End |
|
|
176 | (3) |
|
10.1.2 Reflection at the Open End |
|
|
179 | (2) |
|
|
181 | (5) |
|
10.2.1 Need for an Adaptive Bias Scheme |
|
|
181 | (1) |
|
10.2.2 Reflection Amplifier with an Adaptive Bias |
|
|
181 | (5) |
|
10.2.3 Improved R-C Network |
|
|
186 | (1) |
|
|
186 | (7) |
|
10.4 Comparison with Haus's Oscillator |
|
|
193 | (1) |
|
|
194 | (3) |
|
11 Chaotic Soliton Oscillator and Chaotic Communications |
|
|
197 | (14) |
|
|
|
|
11.1 Chaos and Chaotic Communications |
|
|
198 | (2) |
|
11.2 Chaotic Soliton Oscillator |
|
|
200 | (2) |
|
11.3 Simulation of the Chaotic Soliton Oscillator |
|
|
202 | (1) |
|
11.4 Simulation of Chaotic Binary Communication |
|
|
203 | (5) |
|
|
208 | (3) |
|
12 Phase Noise of Soliton Oscillators |
|
|
211 | (28) |
|
|
12.1 Phase Noise Fundamentals |
|
|
212 | (3) |
|
12.2 Phase Noise Due to Direct Phase Perturbation |
|
|
215 | (10) |
|
12.2.1 Distributed Noise Sources |
|
|
215 | (8) |
|
12.2.2 Lumped Noise Sources |
|
|
223 | (2) |
|
12.3 Amplitude-to-Phase Noise Conversion |
|
|
225 | (4) |
|
12.3.1 Distributed Noise Sources |
|
|
227 | (1) |
|
12.3.2 Lumped Noise Sources |
|
|
228 | (1) |
|
12.3.3 Indirect vs. Direct Phase Perturbations |
|
|
229 | (1) |
|
12.4 Experimental Verification |
|
|
229 | (9) |
|
12.4.1 Oscillator Prototypes |
|
|
229 | (1) |
|
12.4.2 Phase Noise Measurement |
|
|
230 | (2) |
|
12.4.3 Intensity of Noise Sources |
|
|
232 | (3) |
|
12.4.4 Measurement-Theory Comparison |
|
|
235 | (3) |
|
|
238 | (1) |
Bibliography |
|
239 | (8) |
Index |
|
247 | |