Atjaunināt sīkdatņu piekrišanu

E-grāmata: Electrically Conductive Polymers and Polymer Composites: From Synthesis to Biomedical Applications

Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Izdošanas datums: 27-Dec-2017
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527807925
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 117,72 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 27-Dec-2017
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527807925
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A comprehensive and up-to-date overview of the latest research trends in conductive polymers and polymer hybrids, summarizing recent achievements.
The book begins by introducing conductive polymer materials and their classification, while subsequent chapters discuss the various syntheses, resulting properties and up-scaling as well as the important applications in biomedical and biotechnological fields, including biosensors and biodevices. The whole is rounded off by a look at future technological advances.
The result is a well-structured, essential reference for beginners as well as experienced researchers.
About the Editors xiii
Preface xvii
1 Bioinspired Polydopamine and Composites for Biomedical Applications 1(30)
Ziyauddin Khan
Ravi Shanker
Dooseung Urn
Amit Jaiswal
Hyunhyub Ko
1.1 Introduction
1(1)
1.2 Synthesis of Polydopamine
2(3)
1.2.1 Polymerization of Polydopamine
2(1)
1.2.2 Synthesis of Polydopamine Nanostructures
3(2)
1.3 Properties of Polydopamine
5(5)
1.3.1 General Properties of Polydopamine
5(1)
1.3.2 Electrical Properties of Polydopamine
6(4)
1.3.2.1 Amorphous Semiconductor Model (ASM) of Melanin Conductivity
7(1)
1.3.2.2 Spin Muon Resonance Model (SMRM) of Melanin Conductivity
8(2)
1.4 Applications of Polydopamine
10(11)
1.4.1 Biomedical Applications of Polydopamine
11(23)
1.4.1.1 Drug Delivery
11(1)
1.4.1.2 Tissue Engineering
12(1)
1.4.1.3 Antimicrobial Applications
12(3)
1.4.1.4 Bioimaging
15(1)
1.4.1.5 Cell Adhesion and Proliferation
16(1)
1.4.1.6 Cancer Therapy
16(5)
1.5 Conclusion and Future Prospectives
21(2)
References
23(8)
2 Multifunctional Polymer-Dilute Magnetic Conductor and Bio-Devices 31(16)
Imran Khan
Weqar A. Siddiqui
Shahid P. Ansari
Shakeel Khan
Mohammad Mujahid Ali khan
Anish Khan
Salem A. Hamid
2.1 Introduction
31(3)
2.2 Magnetic Semiconductor-Nanoparticle-Based Polymer Nanocomposites
34(1)
2.3 Types of Magnetic Semiconductor Nanoparticles
34(3)
2.3.1 Metal and Metal Oxide Nanoparticles
34(1)
2.3.2 Ferrites
35(1)
2.3.3 Dilute Magnetic Semiconductors
36(1)
2.3.4 Manganites
37(1)
2.4 Synthetic Strategies for Composite Materials
37(5)
2.4.1 Physical Methods
38(2)
2.4.2 Chemical Methods
40(2)
2.4.2.1 In Situ Synthesis of Magnetic Nanoparticles and Polymer Nanocomposites
40(1)
2.4.2.2 In Situ Polymerization in the Presence of Magnetic Nanoparticles
41(1)
2.5 Biocompatibility of Polymer/Semiconductor-Particle-Based Nanocomposites and Their Products for Biomedical Applications
42(1)
2.5.1 Biocompatibility
42(1)
2.6 Biomedical Applications
43(1)
References
43(4)
3 Polymer-Inorganic Nanocomposite and Biosensors 47(22)
Anish Khan
Aftab Aslam Parwaz Khan
Abdullah M. Asiri
Salmon A. Khan
Imran Khan
Mohammad Mujahid Ali Khan
3.1 Introduction
47(1)
3.2 Nanocomposite Synthesis
48(1)
3.3 Properties of Polymer-Based Nanocomposites
48(4)
3.3.1 Mechanical Properties
48(3)
3.3.2 Thermal Properties
51(1)
3.4 Electrical Properties
52(1)
3.5 Optical Properties
53(1)
3.6 Magnetic Properties
54(1)
3.7 Application of Polymer-Inorganic Nanocomposite in Biosensors
54(8)
3.7.1 DNA Biosensors
54(4)
3.7.2 Immunosensors
58(3)
3.7.3 Aptamer Sensors
61(1)
3.8 Conclusions
62(1)
References
63(6)
4 Carbon Nanomaterial-Based Conducting Polymer Composites for Biosensing Applications 69(24)
Mohammad O. Ansari
4.1 Introduction
69(1)
4.2 Biosensor: Features, Principle, Types, and Its Need in Modern-Day Life
70(3)
4.2.1 Important Features of a Successful Biosensor
71(1)
4.2.2 Types of Biosensors
71(1)
4.2.2.1 Calorimetric Biosensors
71(1)
4.2.2.2 Potentiometric Biosensors
72(1)
4.2.2.3 Acoustic Wave Biosensors
72(1)
4.2.2.4 Amperometric Biosensors
72(1)
4.2.2.5 Optical Biosensors
72(1)
4.2.3 Need for Biosensors
72(1)
4.3 Common Carbon Nanomaterials and Conducting Polymers
73(1)
4.3.1 Carbon Nanotubes (CNTs) and Graphene (GN)
73(1)
4.3.2 Conducting Polymers
73(1)
4.4 Processability of CNTs and GN with Conducting Polymers, Chemical Interactions, and Mode of Detection for Biosensing
74(1)
4.5 PANI Composites with CNT and GN for Biosensing Applications
75(4)
4.5.1 Hydrogen Peroxide (H202) Sensors
75(1)
4.5.2 Glucose Biosensors
76(1)
4.5.3 Cholesterol Biosensors
77(1)
4.5.4 Nucleic Acid Biosensors
78(1)
4.6 PPy and PTh Composites with CNT and GN for Biosensing Applications
79(1)
4.7 Conducting Polymer Composites with CNT and GN for the Detection of Organic Molecules
80(3)
4.8 Conducting Polymer Composites with CNT and GN for Microbial Biosensing
83(1)
4.9 Conclusion and Future Research
83(1)
References
84(9)
5 Graphene and Graphene Oxide Polymer Composite for Biosensors Applications 93(20)
Aftab Aslam Parwaz Khan
Anish Khan
Abdullah M. Asiri
5.1 Introduction
93(3)
5.2 Polymer-Graphene Nanocomposites and Their Applications
96(10)
5.2.1 Polyaniline
97(5)
5.2.2 Polypyrrole
102(4)
5.3 Conclusions, Challenges, and Future Scope
106(2)
References
108(5)
6 Polyaniline Nanocomposite Materials for Biosensor Designing 113(24)
Mohammad Oves
Mohammad Shahadat
Shakeel A. Ansari
Mohammad Aslam
Iqbal IM Ismail
6.1 Introduction
113(5)
6.2 Importance of PANI-Based Biosensors
118(1)
6.3 Polyaniline-Based Glucose Biosensors
118(2)
6.4 Polyaniline-Based Peroxide Biosensors
120(1)
6.5 Polyaniline-Based Genetic Material Biosensors
121(1)
6.6 Immunosensors
122(1)
6.7 Biosensors of Phenolic Compounds
123(1)
6.8 Polyaniline-Based Biosensor for Water Quality Assessment
123(1)
6.9 Scientific Concerns and Future Prospects of Polyaniline-Based Biosensors
124(2)
6.10 Conclusion
126(1)
References
126(11)
7 Recent Advances in Chitosan-Based Films for Novel Biosensor 137(26)
Akil Ahmad
Jamal A. Siddique
Siti H.M. Setapar
David Lokhat
Ajij Golandaj
Deresh Ramjugernath
7.1 Introduction
137(2)
7.2 Chitosan as Novel Biosensor
139(12)
7.3 Application
151(1)
7.4 Conclusion and Future Perspectives
152(1)
Acknowledgment
153(1)
References
153(10)
8 Self Healing Materials and Conductivity 163(18)
Jamal A. Siddique
Akil Ahmad
Ayaz Mohd
8.1 Introduction
163(1)
8.1.1 What Is Self-Healing?
163(1)
8.1.2 History of Self-Healing Materials
163(1)
8.1.3 What Can We Use Self-Healing Materials for?
164(1)
8.1.4 Biomimetic Materials
164(1)
8.2 Classification of Self-Healing Materials
164(5)
8.2.1 Capsule-Based Self-Healing Materials
165(1)
8.2.2 Vascular Self-Healing Materials
165(2)
8.2.3 Intrinsic Self-Healing Materials
167(2)
8.3 Conductivity in Self-Healing Materials
169(2)
8.3.1 Applications and Advantages
170(1)
8.3.2 Aspects of Conductive Self-Healing Materials
171(1)
8.4 Current and Future Prospects
171(1)
8.5 Conclusions
172(1)
References
173(8)
9 Electrical Conductivity and Biological Efficacy of Ethyl Cellulose and Polyaniline-Based Composites 181(18)
Faruq Mohammad
Tanvir Arfin
Naheed Saba
Mohammad Jawaid
Hamad A. Al-Lohedan
9.1 Introduction
181(2)
9.2 Conductivity of EC Polymers
183(4)
9.2.1 Synthesis of EC-Inorganic Composites
183(1)
9.2.2 Conductivity of EC-Based Composites
184(3)
9.3 Conductivity of PANI Polymer
187(5)
9.3.1 Synthesis of PANI-Based Composites
189(1)
9.3.2 Conductivity of PANI-Based Composites
190(2)
9.4 Biological Efficacy of EC and PANI-Based Composites
192(2)
9.5 Summary and Conclusion
194(1)
Acknowledgments
195(1)
References
195(4)
10 Synthesis of Polyaniline-Based Nanocomposite Materials and Their Biomedical Applications 199(20)
Mohammad Shahadat
Shaikh Z. Ahammad
Syed A. Wazed
Suzylawati Ismail
10.1 Introduction
199(2)
10.2 Biomedical Applications of PANI-Supported Nanohybrid Materials
201(10)
10.2.1 Biocompatibility
201(1)
10.2.2 Antimicrobial Activity
202(2)
10.2.3 Tissue Engineering
204(7)
10.3 Conclusion
211(1)
Acknowledgment
211(1)
References
211(8)
11 Electrically Conductive Polymers and Composites for Biomedical Applications 219(18)
Haryanto
Mohammad Mansoob Khan
11.1 Introduction
219(1)
11.2 Conducting Polymers
219(4)
11.2.1 Conducting Polymer Synthesis
221(1)
11.2.1.1 Electrochemical Synthesis
221(1)
11.2.1.2 Chemical Synthesis
221(1)
11.2.2 Types of Conducting Polymer Used for Biomedical Applications
221(2)
11.2.2.1 Polypyrrole
221(1)
11.2.2.2 Polyaniline
222(1)
11.2.2.3 Polythiophene and Its Derivatives
222(1)
11.3 Conductive Polymer Composite
223(3)
11.3.1 Types of Conductive Polymer Composite
223(2)
11.3.1.1 Composites or Blends Based on Conjugated Conducting Polymers
223(1)
11.3.1.2 Composites or Blends Based on Non-Conjugated Conducting Polymers
224(1)
11.3.2 Methods for the Synthesis of Conductive Polymer Composites
225(1)
11.3.2.1 Melt Processing
225(1)
11.3.2.2 Mixing
225(1)
11.3.2.3 Latex Technology
225(1)
11.3.2.4 In Situ Polymerization Method
225(1)
11.4 Biomedical Applications of Conductive Polymers
226(2)
11.4.1 Electrically Conductive Polymer Systems (ECPs) for Drug Targeting and Delivery
226(1)
11.4.2 Electrically Conductive Polymer System (ECPs) for Tissue Engineering and Regenerative Medicine
227(1)
11.4.3 Electrically Conductive Polymer Systems (ECPs) as Sensors of Biologically Important Molecules
227(1)
11.5 Future Prospects
228(1)
11.6 Conclusions
228(1)
References
228(9)
Index 237
Anish Khan is assistant professor in the Chemistry Department, Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah in Saudi Arabia. He obtained his PhD degree from the Aligarh Muslim University in Aligarh, India, in 2010. Dr. Khan has authored more than 100 research papers and 6 books. His research interest include synthetic polymers and organic-inorganic electrically conducting nano-composites, as well as their applications in electro-analytical and materials chemistry.

Mohammad Jawaid is associate professor at the Biocomposite Technology Laboratory, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, in Malaysia as well as visiting professor at the Department of Chemical Engineering, King Saud University, Saudi Arabia since June 2013. He obtained his PhD degree from the Universiti Sains Malaysia, Malaysia. He has more than 10 years of experience in teaching, research, and industries. His current research interests include hybrid reinforced and filled polymer composites, fire retardants, lignocellulosic fibres and solid wood, as well as nanocomposites and nanocellulose fibres. Dr. Jawaid has published 11 Books, 27 Book Chapters, and has authored more than 190 Scientific Peer-reviewed Journal Articles.

Aftab Aslam Parwaz Khan is assistant professor in the Chemistry Department, Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah in Saudi Arabia. He obtained his PhD degree from the Aligarh Muslim University in Aligarh, India. Professor Parwaz Khan has authored more than 80 publications and 2 books. His research interests include the preparation and characterization of nanomaterials as well as their applications drug delivery systems.

Abdullah Mohammed Ahmed Asiri is professor of the Chemistry Department, Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah in Saudi Arabia. He obtained his PhD degree from the University of Walls College of Cardiff, U.K., in 1995. His research interests include the synthesis of photochromic and thermochromic systems as well as their applications in materials science, such as OLEDS and high performance organic dyes and pigments. He is member of editorial board of wide variety of journals, has authored more than 100 scientific publications, 6 books and has 2 patents on his name