Atjaunināt sīkdatņu piekrišanu

E-grāmata: Electroanalytical Chemistry: Principles, Best Practices, and Case Studies

  • Formāts - PDF+DRM
  • Cena: 129,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Provides a strong foundation in electrochemical principles and best practices

Written for undergraduate majors in chemistry and chemical engineering, this book teaches the basic principles of electroanalytical chemistry and illustrates best practices through the use of case studies of organic reactions and catalysis using voltammetric methods and of the measurement of clinical and environmental analytes by potentiometric techniques. It provides insight beyond the field of analysis as students address problems arising in many areas of science and technology. The book also emphasizes electrochemical phenomena and conceptual models to help readers understand the influence of experimental conditions and the interpretation of results for common potentiometric and voltammetric methods.

Electroanalytical Chemistry: Principles, Best Practices, and Case Studies begins by introducing some basic concepts in electrical phenomena. It then moves on to a chapter that examines the potentiometry of oxidation-reduction processes, followed by another on the potentiometry of ion selective electrodes. Other sections look at: applications of ion selective electrodes; controlled potential methods; case studies in controlled potential methods; and instrumentation. The book also features several appendixes covering: Ionic Strength, Activity and Activity Coefficients; The Nicolsky-Eisenman Equation; The Henderson Equation for Liquid Junction Potentials; Selected Standard Electrode Potentials; and The Nernst Equation Derivation.

  • Introduces the principles of modern electrochemical sensors and instrumental chemical analysis using potentiometric and voltammetric methods
  • Develops conceptual models underlying electrochemical phenomena and useful equations
  • Illustrates best practice with short case studies of organic reaction mechanisms using voltammetry and quantitative analysis with ion selective electrodes
  • Offers instructors the opportunity to select focus areas and tailor the book to their course by providing a collection of shorter texts, each dedicated to a single field
  • Intended as one of a series of modules for teaching undergraduate courses in instrumental chemical analysis

Electroanalytical Chemistry: Principles, Best Practices, and Case Studies is an ideal textbook for undergraduate majors in chemistry and chemical engineering taking instrumental analysis courses. It would also benefit professional chemists who need an introduction to potentiometry or voltammetry.

Preface ix
1 Basic Electrical Principles
1(30)
1.1 Overview
2(2)
1.2 Basic Concepts
4(6)
1.2.1 Volt Defined
7(1)
1.2.2 Current Defined
7(1)
1.2.3 Oxidation and Reduction
8(1)
1.2.4 Current and Faraday's Law
8(1)
1.2.5 Potential, Work, and Gibbs' Free Energy Change
9(1)
1.2.6 Methods Based on Voltage Measurement Versus Current Measurement
10(1)
1.3 Electrochemical Cells
10(4)
1.3.1 Electrodes
10(2)
1.3.2 Cell Resistance
12(1)
1.3.3 Supporting Electrolyte
13(1)
1.4 The Electrified Interface or Electrical Double Layer
14(8)
1.4.1 Structure of the Double Layer
14(6)
1.4.2 The Relationship Between Double Layer Charge and the Potential at the Electrode Interface
20(2)
1.5 Conductance
22(2)
1.6 Mass Transport by Convection and Diffusion
24(2)
1.7 Liquid Junction Potentials
26(5)
Problems
29(1)
References
29(2)
2 Potentiometry of Oxidation-Reduction Processes
31(38)
2.1 Overview
31(2)
2.2 Measuring "Open Circuit" Potentials
33(1)
2.3 Solution Redox Potential
34(35)
2.3.1 The Development of a Charge Separation
35(1)
2.3.2 The Nernst Equation
36(2)
2.3.3 Formal Potential
38(3)
2.3.4 Active Metal Indicator Electrodes
41(11)
2.3.5 Redox Titrations
52(3)
2.3.6 Oxidation-Reduction Potential (ORP) or EH
55(2)
2.3.7 Environmental Applications of Redox Measurements
57(7)
Problems
64(2)
References
66(3)
3 Potentiometry of Ion Selective Electrodes
69(48)
3.1 Overview
69(4)
3.2 Liquid Membrane Devices
73(9)
3.2.1 Selective Accumulation of Ions Inside an Organic Liquid
73(4)
3.2.2 Theory of Membrane Potentials
77(3)
3.2.3 Liquid Membrane Ionophores
80(2)
3.3 Glass Membrane Sensors
82(11)
3.3.1 History of the Development of a Glass Sensor of pH
82(1)
3.3.2 Glass Structure and Sensor Properties
83(4)
3.3.3 Selective Ion Exchange Model
87(1)
3.3.4 The Combination pH Electrode
88(1)
3.3.5 Gas-Sensing Electrodes
89(4)
3.4 Crystalline Membrane Electrodes
93(3)
3.5 Calibration Curves and Detection Limits
96(4)
3.6 A Revolutionary Improvement in Detection Limits
100(2)
3.7 More Recent Ion Selective Electrode Innovations
102(6)
3.7.1 The Function of the Inner Reference Electrode
103(1)
3.7.2 All Solid-State Reference Electrodes
104(1)
3.7.3 Eliminating the Inner Reference Electrode
105(2)
3.7.4 Super-Hydrophobic Membranes
107(1)
3.8 Ion Selective Field Effect Transistors (ISFETs)
108(3)
3.9 Practical Considerations
111(6)
3.9.1 Ionic Strength Buffers
111(1)
3.9.2 Potential Drift
112(1)
Problems
112(2)
References
114(3)
4 Applications of Ion Selective Electrodes
117(40)
4.1 Overview
117(1)
4.2 Case L An Industrial Application
118(12)
4.2.1 Will the Sample Concentrations Be Measurable?
118(1)
4.2.2 Ionic Strength Adjustment Buffer
118(1)
4.2.3 Sample Pretreatment
119(1)
4.2.4 Salt Bridges
120(2)
4.2.5 Calibration
122(1)
4.2.6 Temperature Control
123(1)
4.2.7 Signal Drift
124(1)
4.2.8 Validating the Method
124(3)
4.2.9 Standard Additions for Potentiometric Analysis
127(3)
4.3 Case II. A Clinical Application
130(5)
4.4 Case III. Environmental Applications
135(7)
4.4.1 US EPA Method for Nitrate Determination by ISE
136(3)
4.4.2 Field Measurements
139(3)
4.5 Good Lab Practice for pH Electrode Use
142(15)
4.5.1 Electrode Maintenance
142(1)
4.5.2 Standard Buffers
143(1)
4.5.3 Influence of Temperature on Cell Potentials
143(2)
4.5.4 Calibration and Direct Sample Measurement
145(1)
4.5.5 Evaluating the Response of a pH Electrode
145(2)
4.5.6 Calibrating a Combination Electrode and pH Meter
147(1)
4.5.7 Low Ionic Strength Samples
148(1)
4.5.8 Samples Containing Soil, Food, Protein or Tris Buffer
148(1)
4.5.9 pH Titrations
149(1)
4.5.10 Gran Plots
149(2)
Problems
151(2)
References
153(4)
5 Controlled Potential Methods
157(80)
5.1 Overview
157(4)
5.2 Similarities between Spectroscopy and Voltammetry
161(2)
5.3 Current is a Measure of the Rate of the Overall Electrode Process
163(23)
5.3.1 Rate of Electron Transfer
163(4)
5.3.2 The Shape of the Current/Voltage Curve
167(1)
5.3.3 Rate of Mass Transport
168(5)
5.3.4 Electrochemical Reversibility
173(2)
5.3.5 Voltammetry at Stationary Electrodes in Quiet Solutions
175(11)
5.4 Methods for Avoiding Background Current
186(4)
5.5 Working Electrodes
190(17)
5.5.1 Mercury Electrodes
190(1)
5.5.2 Solid Working Electrodes
191(8)
5.5.3 Ultramicroelectrodes
199(5)
5.5.4 Fast Scan CV
204(3)
5.6 Pulse Amperometric Detection
207(2)
5.7 Stripping Voltammetry
209(3)
5.8 Special Applications of Amperometry
212(10)
5.8.1 Flow-Through Detectors
212(1)
5.8.2 Dissolved Oxygen Sensors
213(2)
5.8.3 Enzyme Electrodes
215(3)
5.8.4 Karl Fisher Method for Moisture Determination
218(4)
5.9 Ion Transfer Voltammetry
222(15)
Problems
230(5)
References
235(2)
6 Case Studies in Controlled Potential Methods
237(32)
6.1 Overview
237(1)
6.2 Case I. Evaluating the Formal Potential and Related Parameters
238(4)
6.3 Case II. Evaluating Catalysts - Thermodynamic Considerations
242(4)
6.4 Case III. Studying the Oxidation of Organic Molecules
246(14)
6.5 Case IV. Evaluating Catalysts - Kinetic Studies
260(9)
References
268(1)
7 Instrumentation
269(20)
7.1 Overview
269(1)
7.2 A Brief Review of Passive Circuits
270(3)
7.3 Operational Amplifiers
273(7)
7.3.1 Properties of an Ideal Operational Amplifier
275(1)
7.3.2 The Voltage Follower
275(1)
7.3.3 Current Follower or Current-to-Voltage Converter
276(1)
7.3.4 Inverter or Simple Gain Amplifier
277(2)
7.3.5 A Potentiostat for a Three-Electrode Experiment
279(1)
7.4 Noise and Shielding
280(3)
7.5 Making Electrodes and Reference Bridges
283(6)
7.5.1 Voltammetric Working Electrodes
283(1)
7.5.2 Reference Electrodes
284(2)
Problems
286(2)
References
288(1)
Appendix A Ionic Strength, Activity, and Activity Coefficients 289(4)
Appendix B The Nicolsky-Eisenman Equation 293(4)
Appendix C The Henderson Equation for Liquid Junction Potentials 297(6)
Appendix D Standard Electrode Potentials for Some Selected Reduction Reactions 303(4)
Appendix E The Nernst Equation from the Concept of Electrochemical Potential 307(4)
Solutions To Problems 311(22)
Index 333
Gary A. Mabbott, PhD, has taught analytical chemistry courses for 38 years, and he currently holds the rank of professor emeritus at the University of St. Thomas in St. Paul, Minnesota. He developed voltammetric and coulometric methods for studying electroactive species confined to solid electrode surfaces during his doctoral work with Walter Blaedel. He has published 17 articles in peer-reviewed journals and posted 70 instructional videos on various analytical topics for public use.