Preface |
|
ix | |
|
1 Basic Electrical Principles |
|
|
1 | (30) |
|
|
2 | (2) |
|
|
4 | (6) |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.2.3 Oxidation and Reduction |
|
|
8 | (1) |
|
1.2.4 Current and Faraday's Law |
|
|
8 | (1) |
|
1.2.5 Potential, Work, and Gibbs' Free Energy Change |
|
|
9 | (1) |
|
1.2.6 Methods Based on Voltage Measurement Versus Current Measurement |
|
|
10 | (1) |
|
1.3 Electrochemical Cells |
|
|
10 | (4) |
|
|
10 | (2) |
|
|
12 | (1) |
|
1.3.3 Supporting Electrolyte |
|
|
13 | (1) |
|
1.4 The Electrified Interface or Electrical Double Layer |
|
|
14 | (8) |
|
1.4.1 Structure of the Double Layer |
|
|
14 | (6) |
|
1.4.2 The Relationship Between Double Layer Charge and the Potential at the Electrode Interface |
|
|
20 | (2) |
|
|
22 | (2) |
|
1.6 Mass Transport by Convection and Diffusion |
|
|
24 | (2) |
|
1.7 Liquid Junction Potentials |
|
|
26 | (5) |
|
|
29 | (1) |
|
|
29 | (2) |
|
2 Potentiometry of Oxidation-Reduction Processes |
|
|
31 | (38) |
|
|
31 | (2) |
|
2.2 Measuring "Open Circuit" Potentials |
|
|
33 | (1) |
|
2.3 Solution Redox Potential |
|
|
34 | (35) |
|
2.3.1 The Development of a Charge Separation |
|
|
35 | (1) |
|
2.3.2 The Nernst Equation |
|
|
36 | (2) |
|
|
38 | (3) |
|
2.3.4 Active Metal Indicator Electrodes |
|
|
41 | (11) |
|
|
52 | (3) |
|
2.3.6 Oxidation-Reduction Potential (ORP) or EH |
|
|
55 | (2) |
|
2.3.7 Environmental Applications of Redox Measurements |
|
|
57 | (7) |
|
|
64 | (2) |
|
|
66 | (3) |
|
3 Potentiometry of Ion Selective Electrodes |
|
|
69 | (48) |
|
|
69 | (4) |
|
3.2 Liquid Membrane Devices |
|
|
73 | (9) |
|
3.2.1 Selective Accumulation of Ions Inside an Organic Liquid |
|
|
73 | (4) |
|
3.2.2 Theory of Membrane Potentials |
|
|
77 | (3) |
|
3.2.3 Liquid Membrane Ionophores |
|
|
80 | (2) |
|
3.3 Glass Membrane Sensors |
|
|
82 | (11) |
|
3.3.1 History of the Development of a Glass Sensor of pH |
|
|
82 | (1) |
|
3.3.2 Glass Structure and Sensor Properties |
|
|
83 | (4) |
|
3.3.3 Selective Ion Exchange Model |
|
|
87 | (1) |
|
3.3.4 The Combination pH Electrode |
|
|
88 | (1) |
|
3.3.5 Gas-Sensing Electrodes |
|
|
89 | (4) |
|
3.4 Crystalline Membrane Electrodes |
|
|
93 | (3) |
|
3.5 Calibration Curves and Detection Limits |
|
|
96 | (4) |
|
3.6 A Revolutionary Improvement in Detection Limits |
|
|
100 | (2) |
|
3.7 More Recent Ion Selective Electrode Innovations |
|
|
102 | (6) |
|
3.7.1 The Function of the Inner Reference Electrode |
|
|
103 | (1) |
|
3.7.2 All Solid-State Reference Electrodes |
|
|
104 | (1) |
|
3.7.3 Eliminating the Inner Reference Electrode |
|
|
105 | (2) |
|
3.7.4 Super-Hydrophobic Membranes |
|
|
107 | (1) |
|
3.8 Ion Selective Field Effect Transistors (ISFETs) |
|
|
108 | (3) |
|
3.9 Practical Considerations |
|
|
111 | (6) |
|
3.9.1 Ionic Strength Buffers |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
112 | (2) |
|
|
114 | (3) |
|
4 Applications of Ion Selective Electrodes |
|
|
117 | (40) |
|
|
117 | (1) |
|
4.2 Case L An Industrial Application |
|
|
118 | (12) |
|
4.2.1 Will the Sample Concentrations Be Measurable? |
|
|
118 | (1) |
|
4.2.2 Ionic Strength Adjustment Buffer |
|
|
118 | (1) |
|
4.2.3 Sample Pretreatment |
|
|
119 | (1) |
|
|
120 | (2) |
|
|
122 | (1) |
|
4.2.6 Temperature Control |
|
|
123 | (1) |
|
|
124 | (1) |
|
4.2.8 Validating the Method |
|
|
124 | (3) |
|
4.2.9 Standard Additions for Potentiometric Analysis |
|
|
127 | (3) |
|
4.3 Case II. A Clinical Application |
|
|
130 | (5) |
|
4.4 Case III. Environmental Applications |
|
|
135 | (7) |
|
4.4.1 US EPA Method for Nitrate Determination by ISE |
|
|
136 | (3) |
|
|
139 | (3) |
|
4.5 Good Lab Practice for pH Electrode Use |
|
|
142 | (15) |
|
4.5.1 Electrode Maintenance |
|
|
142 | (1) |
|
|
143 | (1) |
|
4.5.3 Influence of Temperature on Cell Potentials |
|
|
143 | (2) |
|
4.5.4 Calibration and Direct Sample Measurement |
|
|
145 | (1) |
|
4.5.5 Evaluating the Response of a pH Electrode |
|
|
145 | (2) |
|
4.5.6 Calibrating a Combination Electrode and pH Meter |
|
|
147 | (1) |
|
4.5.7 Low Ionic Strength Samples |
|
|
148 | (1) |
|
4.5.8 Samples Containing Soil, Food, Protein or Tris Buffer |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
149 | (2) |
|
|
151 | (2) |
|
|
153 | (4) |
|
5 Controlled Potential Methods |
|
|
157 | (80) |
|
|
157 | (4) |
|
5.2 Similarities between Spectroscopy and Voltammetry |
|
|
161 | (2) |
|
5.3 Current is a Measure of the Rate of the Overall Electrode Process |
|
|
163 | (23) |
|
5.3.1 Rate of Electron Transfer |
|
|
163 | (4) |
|
5.3.2 The Shape of the Current/Voltage Curve |
|
|
167 | (1) |
|
5.3.3 Rate of Mass Transport |
|
|
168 | (5) |
|
5.3.4 Electrochemical Reversibility |
|
|
173 | (2) |
|
5.3.5 Voltammetry at Stationary Electrodes in Quiet Solutions |
|
|
175 | (11) |
|
5.4 Methods for Avoiding Background Current |
|
|
186 | (4) |
|
|
190 | (17) |
|
|
190 | (1) |
|
5.5.2 Solid Working Electrodes |
|
|
191 | (8) |
|
5.5.3 Ultramicroelectrodes |
|
|
199 | (5) |
|
|
204 | (3) |
|
5.6 Pulse Amperometric Detection |
|
|
207 | (2) |
|
5.7 Stripping Voltammetry |
|
|
209 | (3) |
|
5.8 Special Applications of Amperometry |
|
|
212 | (10) |
|
5.8.1 Flow-Through Detectors |
|
|
212 | (1) |
|
5.8.2 Dissolved Oxygen Sensors |
|
|
213 | (2) |
|
|
215 | (3) |
|
5.8.4 Karl Fisher Method for Moisture Determination |
|
|
218 | (4) |
|
5.9 Ion Transfer Voltammetry |
|
|
222 | (15) |
|
|
230 | (5) |
|
|
235 | (2) |
|
6 Case Studies in Controlled Potential Methods |
|
|
237 | (32) |
|
|
237 | (1) |
|
6.2 Case I. Evaluating the Formal Potential and Related Parameters |
|
|
238 | (4) |
|
6.3 Case II. Evaluating Catalysts - Thermodynamic Considerations |
|
|
242 | (4) |
|
6.4 Case III. Studying the Oxidation of Organic Molecules |
|
|
246 | (14) |
|
6.5 Case IV. Evaluating Catalysts - Kinetic Studies |
|
|
260 | (9) |
|
|
268 | (1) |
|
|
269 | (20) |
|
|
269 | (1) |
|
7.2 A Brief Review of Passive Circuits |
|
|
270 | (3) |
|
7.3 Operational Amplifiers |
|
|
273 | (7) |
|
7.3.1 Properties of an Ideal Operational Amplifier |
|
|
275 | (1) |
|
7.3.2 The Voltage Follower |
|
|
275 | (1) |
|
7.3.3 Current Follower or Current-to-Voltage Converter |
|
|
276 | (1) |
|
7.3.4 Inverter or Simple Gain Amplifier |
|
|
277 | (2) |
|
7.3.5 A Potentiostat for a Three-Electrode Experiment |
|
|
279 | (1) |
|
|
280 | (3) |
|
7.5 Making Electrodes and Reference Bridges |
|
|
283 | (6) |
|
7.5.1 Voltammetric Working Electrodes |
|
|
283 | (1) |
|
7.5.2 Reference Electrodes |
|
|
284 | (2) |
|
|
286 | (2) |
|
|
288 | (1) |
Appendix A Ionic Strength, Activity, and Activity Coefficients |
|
289 | (4) |
Appendix B The Nicolsky-Eisenman Equation |
|
293 | (4) |
Appendix C The Henderson Equation for Liquid Junction Potentials |
|
297 | (6) |
Appendix D Standard Electrode Potentials for Some Selected Reduction Reactions |
|
303 | (4) |
Appendix E The Nernst Equation from the Concept of Electrochemical Potential |
|
307 | (4) |
Solutions To Problems |
|
311 | (22) |
Index |
|
333 | |