Atjaunināt sīkdatņu piekrišanu

E-grāmata: Electromagnetic Band Gap Structures in Antenna Engineering

(University of California, Los Angeles), (University of Mississippi)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 111,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

A detailed account of the state-of-the-art in electromagnetic band gap (EBG) theory, analysis and applications, ideal for researchers and engineers.

This comprehensive, applications-oriented survey of the state-of-the art in Electromagnetic Band Gap (EBG) engineering explains the theory, analysis, and design of EBG structures. It helps you to understand EBG applications in antenna engineering through an abundance of novel antenna concepts, a wealth of practical examples, and complete design details. You discover a customized FDTD method of EBG analysis, for which accurate and efficient electromagnetic software is supplied (www.cambridge.org/9780521889919) to provide you with a powerful computational engine for your EBG designs. The first book covering EBG structures and their antenna applications, this provides a dynamic resource for engineers, and researchers and graduate students working in antennas, electromagnetics and microwaves.

Papildus informācija

This book is a detailed account of electromagnetic band gap (EBG) theory, analysis and applications, ideal for researchers and engineers.
Preface ix
Acknowledgements xi
Abbreviations xii
Introduction
1(13)
Background
1(1)
Electromagnetic band gap (EBG) structures
2(4)
EBG definition
2(2)
EBG and metamaterials
4(2)
Analysis methods for EBG structures
6(2)
EBG applications in antenna engineering
8(6)
Antenna substrates for surface wave suppressions
8(1)
Antenna substrates for efficient low profile wire antenna designs
9(1)
Reflection/transmission surfaces for high gain antennas
10(4)
FDTD method for periodic structure analysis
14(16)
FDTD fundamentals
14(10)
Introduction
14(1)
Yee's cell and updating scheme
15(3)
Absorbing boundary conditions: PML
18(4)
FDTD excitation
22(1)
Extraction of characteristic parameters
23(1)
Periodic boundary conditions
24(6)
Fundamental challenges in PBC
24(1)
Overview of various PBCs
25(1)
Constant kx method for scattering analysis
26(4)
Guided wave analysis
30(29)
Problem statement
30(1)
Brillouin zone for periodic waveguides
31(2)
Examples
33(4)
Plane wave scattering analysis
37(8)
Problem statement
38(1)
Plane wave excitation
39(2)
Examples
41(4)
A unified approach: hybrid FDTD/ARMA method
45(9)
A unified approach for guided wave and scattering analysis
45(4)
ARMA estimator
49(2)
Examples
51(3)
Projects
54(5)
EBG characterizations and classifications
59(28)
Resonant circuit models for EBG structures
59(4)
Effective medium model with lumped LC elements
59(2)
Transmission line model for surface waves
61(1)
Transmission line model for plane waves
62(1)
Graphic representation of frequency band gap
63(4)
FDTD model
63(2)
Near field distributions inside and outside the frequency band gap
65(2)
Frequency band gap for surface wave propagation
67(2)
Dispersion diagram
67(1)
Surface wave band gap
68(1)
In-phase reflection for plane wave incidence
69(5)
Reflection phase
69(1)
EBG reflection phase: normal incidence
70(1)
EBG reflection phase: oblique incidence
71(3)
Soft and hard surfaces
74(10)
Impedance and reflection coefficient of a periodic ground plane
75(2)
Soft and hard operations
77(3)
Examples
80(4)
Classifications of various EBG structures
84(1)
Project
85(2)
Designs and optimizations of EBG structures
87(40)
Parametric study of a mushroom-like EBG structure
87(4)
Patch width effect
87(2)
Gap width effect
89(1)
Substrate thickness effect
89(1)
Substrate permittivity effect
90(1)
Comparison of mushroom and uni-planar EBG designs
91(4)
Polarization-dependent EBG surface designs
95(8)
Rectangular patch EBG surface
95(2)
Slot loaded EBG surface
97(1)
EBG surface with offset vias
97(2)
An example application: PDEBG reflector
99(4)
Compact spiral EBG designs
103(4)
Single spiral design
103(2)
Double spiral design
105(1)
Four-arm spiral design
105(2)
Dual layer EBG designs
107(5)
Particle swarm optimization (PSO) of EBG structures
112(8)
Particle swarm optimization: a framework
112(1)
Optimization for a desired frequency with a +90° reflection phase
113(4)
Optimization for a miniaturized EBG structure
117(1)
General steps of EBG optimization problems using PSO
118(2)
Advanced EBG surface designs
120(4)
Space filling curve EBG designs
120(1)
Multi-band EBG surface designs
120(1)
Tunable EBG surface designs
120(4)
Projects
124(3)
Patch antennas with EBG structures
127(29)
Patch antennas on high permittivity substrate
127(3)
Gain enhancement of a single patch antenna
130(8)
Patch antenna surrounded by EBG structures
130(2)
Circularly polarized patch antenna design
132(4)
Various EBG patch antenna designs
136(2)
Mutual coupling reduction of a patch array
138(11)
Mutual coupling between patch antennas on high dielectric constant substrate
139(3)
Mutual coupling reduction by the EBG structure
142(5)
More design examples
147(2)
EBG patch antenna applications
149(4)
EBG patch antenna for high precision GPS applications
149(1)
EBG patch antenna for wearable electronics
149(2)
EBG patch antennas in phased arrays for scan blindness elimination
151(2)
Projects
153(3)
Low profile wire antennas on EBG ground plane
156(47)
Dipole antenna on EBG ground plane
156(8)
Comparison of PEC, PMC, and EBG ground planes
156(2)
Operational bandwidth selection
158(3)
Parametric studies
161(3)
Low profile antennas: wire-EBG antenna vs. patch antenna
164(7)
Two types of low profile antennas
164(2)
Performance comparison between wire-EBG and patch antennas
166(3)
A dual band wire-EBG antenna design
169(2)
Circularly polarized curl antenna on EBG ground plane
171(9)
Performance of curl antennas over PEC and EBG ground planes
172(3)
Parametric studies of curl antennas over the EBG surface
175(3)
Experimental demonstration
178(2)
Dipole antenna on a PDEBG ground plane for circular polarization
180(5)
Radiation mechanism of CP dipole antenna
181(1)
Experimental results
182(3)
Reconfigurable bent monopole with radiation pattern diversity
185(6)
Bent monopole antenna on EBG ground plane
186(2)
Reconfigurable design for one-dimensional beam switch
188(3)
Reconfigurable design for two-dimensional beam switch
191(1)
Printed dipole antenna with a semi-EBG ground plane
191(9)
Dipole antenna near the edge of a PEC ground plane
193(1)
Enhanced performance of dipole antenna near the edge of an EBG ground plane
194(1)
Printed dipole antenna with a semi-EBG ground plane
195(5)
Summary
200(1)
Projects
200(3)
Surface wave antennas
203(35)
A grounded slab loaded with periodic patches
203(6)
Comparison of two artificial ground planes
203(3)
Surface waves in the grounded slab with periodic patch loading
206(3)
Dipole-fed surface wave antennas
209(8)
Performance of a low profile dipole on a patch-loaded grounded slab
209(3)
Radiation mechanism: the surface wave antenna
212(3)
Effect of the finite artificial ground plane
215(2)
Comparison between the surface wave antenna and vertical monopole antenna
217(1)
Patch-fed surface wave antennas
217(6)
Comparison between a circular microstrip antenna and a patch-fed SWA
218(5)
Experimental demonstration
223(1)
Dual band surface wave antenna
223(13)
Crosspatch-fed surface wave antenna
226(2)
Modified crosspatch-fed surface wave antenna for dual band operation
228(8)
Projects
236(2)
Appendix: EBG literature review 238(23)
Index 261
Fan Yang is Assistant Professor of the Electrical Engineering Department at the University of Mississippi. Dr. Yang received Young Scientist Awards in the 2005 General Assembly of International Union of Radio Science (URSI) and in the 2007 International Symposium on Electromagnetic Theory. Yahya Rahmat-Samii is a Distinguished Professor, holder of the Northrop-Grumman Chair in electromagnetics and past Chairman of the Electrical Engineering Department at the University of California, Los Angeles (UCLA). He has received numerous recognitions and awards including IEEE Fellow in 1985, IEEE Third Millennium Medal, the 2005 URSI Booker Gold Medal, the 2007 Chen-To Tai Distinguished Educator Award of the IEEE Antennas and Propagation Society and the membership of the US National Academy of Engineering.